Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Occupancy models are frequently used by ecologists to quantify spatial variation in species distributions while accounting for observational biases in the collection of detection-nondetection data. However, the common assumption that a single set of regression coefficients can adequately explain species-environment relationships is often unrealistic, especially across large spatial domains. Here we develop single-species (i.e., univariate) and multi-species (i.e., multivariate) spatially-varying coefficient (SVC) occupancy models to account for spatially-varying species-environment relationships. We employ Nearest Neighbor Gaussian Processes and Pólya-Gamma data augmentation in a hierarchical Bayesian framework to yield computationally-efficient Gibbs samplers, which we implement in the spOccupancy R package. For multi-species models, we use spatial factor dimension reduction to efficiently model datasets with large numbers of species (e.g., \(> 10\)). The hierarchical Bayesian framework readily enables generation of posterior predictive maps of the SVCs, with fully propagated uncertainty. We apply our SVC models to quantify spatial variability in the relationships between maximum breeding season temperature and occurrence probability of 21 grassland bird species across the USA. Jointly modeling species generally outperformed single-species models, which all revealed substantial spatial variability in species occurrence relationships with maximum temperatures. Our models are particularly relevant for quantifying species-environment relationships using detection-nondetection data from large-scale monitoring programs, which are becoming increasingly prevalent for answering macroscale ecological questions regarding wildlife responses to global change.Supplementary material to this paper is provided online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguinis H, Gottfredson RK, Culpepper SA (2013) Best-practice recommendations for estimating cross-level interaction effects using multilevel modeling. J Manag 39(6):1490–1528

    Google Scholar 

  • Amburgey SM, Miller DA, Campbell Grant EH, Rittenhouse TA, Benard MF, Richardson JL, Urban MC, Hughson W, Brand AB, Davis CJ et al (2018) Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation. Glob Change Biol 24(1):439–454

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, Boston

    Book  Google Scholar 

  • Bateman BL, Wilsey C, Taylor L, Wu J, LeBaron GS, Langham G (2020) North American birds require mitigation and adaptation to reduce vulnerability to climate change. Conserv Sci Pract 2(8):e242

    Article  Google Scholar 

  • BirdLife International (2021) Handbook of the Birds of the World 2021. Bird species distribution maps of the world, Ver. 2021. http://datazone.birdlife.org/species/requestdis

  • Bolker B (2022) GLMM FAQ. https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html. Accessed 2022-09-03

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    MathSciNet  Google Scholar 

  • Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw 76(1)

  • Clark AE, Altwegg R (2019) Efficient Bayesian analysis of occupancy models with logit link functions. Ecol Evol 9(2):756–768

    Article  Google Scholar 

  • Clark JS, Gelfand AE, Woodall CW, Zhu K (2014) More than the sum of the parts: forest climate response from joint species distribution models. Ecol Appl 24(5):990–999

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous united states. Int J Climatol 28(15):2031–2064

    Article  Google Scholar 

  • Datta A, Banerjee S, Finley AO, Gelfand AE (2016) Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets. J Am Stat Assoc 111(514):800–812

    Article  MathSciNet  Google Scholar 

  • de Valpine P, Turek D, Paciorek C, Anderson-Bergman C, Temple Lang D, Bodik R (2017) Programming with models: writing statistical algorithms for general model structures with NIMBLE. J Comput Graph Stat 26:403–413

    Article  MathSciNet  Google Scholar 

  • Dorazio RM, Royle JA (2005) Estimating size and composition of biological communities by modeling the occurrence of species. J Am Stat Assoc 100(470):389–398

    Article  MathSciNet  Google Scholar 

  • Dormann CF, Bobrowski M, Dehling DM, Harris DJ, Hartig F, Lischke H, Moretti MD, Pagel J, Pinkert S, Schleuning M et al (2018) Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob Ecol Biogeogr 27(9):1004–1016

    Article  Google Scholar 

  • Doser JW, Finley AO, Banerjee S (2023a). Joint species distribution models with imperfect detection for high-dimensional spatial data. Ecology 104(9): e4137

  • Doser JW, Finley AO, Kéry M, Zipkin EF (2022) spOccupancy: An R package for single-species, multi-species, and integrated spatial occupancy models. Methods Ecol Evol 13(8):1670–1678

    Article  Google Scholar 

  • Doser JW, Finley AO, Saunders SP, Kéry M, Weed AS, Zipkin EF (2023) Code and data for Modeling complex species-environment relationships through spatially-varying coefficient occupancy models. Zenodo. https://doi.org/10.5281/zenodo.10294522

    Article  Google Scholar 

  • Doser JW, Weed AS, Zipkin EF, Miller KM, Finley AO (2021) Trends in bird abundance differ among protected forests but not bird guilds. Ecol Appl 31(6):e2377

    Article  Google Scholar 

  • Finley AO (2011) Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol Evol 2(2):143–154

    Article  Google Scholar 

  • Finley AO, Banerjee S (2020) Bayesian spatially varying coefficient models in the spBayes R package. Environ Model Softw 125:104608

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2003) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, New York

    Google Scholar 

  • Gelfand AE, Banerjee S, Gamerman D (2005) Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16(5):465–479

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Kim H-J, Sirmans C, Banerjee S (2003) Spatial modeling with spatially varying coefficient processes. J Am Stat Assoc 98(462):387–396

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonstationary multivariate process modeling through spatially varying coregionalization. TEST 13(2):263–312

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Schmidt AM, Wu S, Silander JA Jr, Latimer A, Rebelo AG (2005) Modelling species diversity through species level hierarchical modelling. J Roy Stat Soc: Ser C (Appl Stat) 54(1):1–20

    MathSciNet  Google Scholar 

  • Heaton MJ, Datta A, Finley AO, Furrer R, Guinness J, Guhaniyogi R, Gerber F, Gramacy RB, Hammerling D, Katzfuss M et al (2019) A case study competition among methods for analyzing large spatial data. J Agric Biol Environ Stat 24:398–425

    Article  MathSciNet  Google Scholar 

  • Hogan JW, Tchernis R (2004) Bayesian factor analysis for spatially correlated data, with application to summarizing area-level material deprivation from census data. J Am Stat Assoc 99(466):314–324

    Article  MathSciNet  Google Scholar 

  • Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, vol 398. Wiley, New York

    Book  Google Scholar 

  • Hug JE, Paciorek CJ (2021). A numerically stable online implementation and exploration of WAIC through variations of the predictive density, using NIMBLE. arXiv preprint arXiv:2106.13359

  • Jarzyna MA, Finley AO, Porter WF, Maurer BA, Beier CM, Zuckerberg B (2014) Accounting for the space-varying nature of the relationships between temporal community turnover and the environment. Ecography 37(11):1073–1083

    Article  Google Scholar 

  • Jarzyna MA, Zuckerberg B, Finley AO, Porter WF (2016) Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landscape Ecol 31:2275–2290

    Article  Google Scholar 

  • Johnson DS, Conn PB, Hooten MB, Ray JC, Pond BA (2013) Spatial occupancy models for large data sets. Ecology 94(4):801–808

    Article  Google Scholar 

  • Latimer AM, Wu S, Gelfand AE, Silander JA Jr (2006) Building statistical models to analyze species distributions. Ecol Appl 16(1):33–50

    Article  Google Scholar 

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B (Stat Methodol) 73(4):423–498

    Article  MathSciNet  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255

    Article  Google Scholar 

  • Martínez-Minaya J, Cameletti M, Conesa D, Pennino MG (2018) Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stoch Env Res Risk Assess 32(11):3227–3244

    Article  Google Scholar 

  • Millar RB (2018) Conditional vs marginal estimation of the predictive loss of hierarchical models using WAIC and cross-validation. Stat Comput 28(2):375–385

    Article  MathSciNet  Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscipl Rev Clim Change 5(3):317–335

    Article  Google Scholar 

  • Pardieck K, Ziolkowski D Jr, Lutmerding M, Aponte V, Hudson M-A (2020) North American breeding bird survey dataset 1966–2019. U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6

  • Pease BS, Pacifici K, Kays R (2022) Exploring spatial nonstationarity for four mammal species reveals regional variation in environmental relationships. Ecosphere 13(8):e4166

    Article  Google Scholar 

  • Pease BS, Pacifici K, Kays R, Reich B (2022b). What drives spatially varying ecological relationships in a wide-ranging species? Divers Distrib 28(9):1752–1768

  • Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  • Polson NG, Scott JG, Windle J (2013) Bayesian inference for logistic models using Pólya-Gamma latent variables. J Am Stat Assoc 108(504):1339–1349

    Article  Google Scholar 

  • Princé K, Zuckerberg B (2015) Climate change in our backyards: the reshuffling of North America’s winter bird communities. Glob Change Biol 21(2):572–585

    Article  Google Scholar 

  • Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W et al (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40(8):913–929

    Article  Google Scholar 

  • Rollinson CR, Finley AO, Alexander MR, Banerjee S, Dixon Hamil K-A, Koenig LE, Locke DH, DeMarche ML, Tingley MW, Wheeler K et al (2021) Working across space and time: nonstationarity in ecological research and application. Front Ecol Environ 19(1):66–72

    Article  Google Scholar 

  • Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M et al (2019) Decline of the North American avifauna. Science 366(6461):120–124

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B (Stat Methodol) 71(2):319–392

    Article  MathSciNet  Google Scholar 

  • Saunders SP, Grand J, Bateman BL, Meek M, Wilsey CB, Forstenhaeusler N, Graham E, Warren R, Price J (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Front Ecol Environ 2:77–84

    Article  Google Scholar 

  • Saunders SP, Meehan TD, Michel NL, Bateman BL, DeLuca W, Deppe JL, Grand J, LeBaron GS, Taylor L, Westerkam H et al (2022) Unraveling a century of global change impacts on winter bird distributions in the eastern united states. Glob Change Biol 28(7):2221–2235

  • Shirota S, Gelfand A, Banerjee S (2019) Spatial joint species distribution modeling using Dirichlet processes. Stat Sin 29:1127–1154

    MathSciNet  Google Scholar 

  • Socolar JB, Mills SC, Haugaasen T, Gilroy JJ, Edwards DP (2022) Biogeographic multi-species occupancy models for large-scale survey data. Ecol Evol 12(10):e9328

    Article  Google Scholar 

  • Stanton R, Morrissey CA, Clark RG (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric Ecosyst Environ 254:244–254

    Article  Google Scholar 

  • Stein ML (2014) Limitations on low rank approximations for covariance matrices of spatial data. Spatial Stat 8:1–19

    Article  MathSciNet  Google Scholar 

  • Sultaire SM, Humphreys JM, Zuckerberg B, Pauli JN, Roloff GJ (2022) Spatial variation in bioclimatic relationships for a snow-adapted species along a discontinuous southern range boundary. J Biogeogr 49(1):66–78

    Article  Google Scholar 

  • Sutherland C, Brambilla M, Pedrini P, Tenan S (2016) A multiregion community model for inference about geographic variation in species richness. Methods Ecol Evol 7(7):783–791

    Article  Google Scholar 

  • Taylor-Rodriguez D, Finley AO, Datta A, Babcock C, Andersen H-E, Cook BD, Morton DC, Banerjee S (2019) Spatial factor models for high-dimensional and large spatial data: an application in forest variable mapping. Stat Sin 29:1155

    MathSciNet  Google Scholar 

  • Thorson JT (2019) Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish Res 210:143–161

    Article  Google Scholar 

  • Thorson JT, Barnes CL, Friedman ST, Morano JL, Siple MC (2023) Spatially varying coefficients can improve parsimony and descriptive power for species distribution models. Ecography 2023(5):e06510

    Article  Google Scholar 

  • Thorson JT, Scheuerell MD, Shelton AO, See KE, Skaug HJ, Kristensen K (2015) Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods Ecol Evol 6(6):627–637

    Article  Google Scholar 

  • Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci 106(supplement–2):19637–19643

    Article  Google Scholar 

  • Tobler MW, Kéry M, Hui FK, Guillera-Arroita G, Knaus P, Sattler T (2019) Joint species distribution models with species correlations and imperfect detection. Ecology 100(8):e02754

    Article  Google Scholar 

  • Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl 13(6):1790–1801

    Article  Google Scholar 

  • Vecchia AV (1988) Estimation and model identification for continuous spatial processes. J Roy Stat Soc: Ser B (Methodol) 50(2):297–312

    MathSciNet  Google Scholar 

  • Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11(12):3571

    MathSciNet  Google Scholar 

  • Wheeler DC, Calder CA (2007) An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J Geogr Syst 9(2):145–166

    Article  Google Scholar 

  • Williams PJ, Hooten MB, Womble JN, Esslinger GG, Bower MR, Hefley TJ (2017) An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics. Ecology 98(2):328–336

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boston

    Book  Google Scholar 

  • Zipkin EF, Grant EHC, Fagan WF (2012) Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol Appl 22(7):1962–1972

    Article  Google Scholar 

  • Zipkin EF, Royle JA, Dawson DK, Bates S (2010) Multi-species occurrence models to evaluate the effects of conservation and management actions. Biol Cons 143(2):479–484

    Article  Google Scholar 

  • Zuckerberg B, Ribic CA, McCauley LA (2018) Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conserv Biol 32(4):872–882

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mason Fidino and one anonymous reviewer for insightful comments that improved the manuscript.

Funding

This work was supported by National Science Foundation (NSF) Grants DBI-1954406, DMS-1916395, and DEB-2213565.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Doser.

Ethics declarations

Conflict of interest

We declare no conflict of interests.

Data Availability Statement

All data and code used in the manuscript are available at https://doi.org/10.5281/zenodo.10159508 (Doser et al. 2023)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 346 KB)

Supplementary file 2 (pdf 41390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doser, J.W., Finley, A.O., Saunders, S.P. et al. Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models. JABES (2024). https://doi.org/10.1007/s13253-023-00595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13253-023-00595-6

Keywords

Navigation