Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Multi-modality MRI for Alzheimer’s disease detection using deep learning

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM integrity caused by Alzheimer’s disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the brain’s gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by structural MRI (sMRI) modality. In this research, we aimed to classify the Alzheimer’s diseases stages by developing a novel multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is based on a 2-dimensional deep convolutional neural network (CNN) features extractor and a support vector machine (SVM) classifier. The fusion framework consists of merging features extracted from DTI scalar metrics [(fractional anisotropy (FA) and mean diffusivity (MD)], and GM using 2D-CNN and feeding them to SVM to classify AD versus cognitively normal (CN), AD versus MCI, and MCI versus CN. Our novel multimodal AD method demonstrates a superior performance with an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used in this study were obtained from the Alzheimer’s disease neuroimaging initiative (ADNI). The full data can be downloaded from (http://adni.loni.usc.edu).

Code availability

The code that supported the fndings of this study is available on request from the corresponding author (Latifa Houria).

References

  1. Patterson C(2018) The state of the art of dementia research: New frontiers. World Alzheimer Report 2018

  2. Fox N, Warrington E, Freeborough P, Hartikainen P, Kennedy A, Stevens J, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 119(6):2001–2007

    Article  Google Scholar 

  3. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB (2016) Brain atrophy in Alzheimers disease and aging. Ageing Res Rev 30:25–48

    Article  Google Scholar 

  4. Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, Cummings JL, Thompson PM (2006) 3d comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain 129(11):2867–2873

    Article  Google Scholar 

  5. Van de Pol L, Gertz H-J, Scheltens P, Wolf H (2011) Hippocampal atrophy in subcortical vascular dementia. Neurodegener Dis 8(6):465–469

    Article  Google Scholar 

  6. Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte EM, Dekosky ST, Becker JT (2005) Differential cortical atrophy in subgroups of mild cognitive impairment. Arch Neurol 62(9):1393–1397

    Article  Google Scholar 

  7. Klein-Koerkamp Y, A Heckemann R, T Ramdeen K, Moreaud O, Keignart S, Krainik A, Hammers A, Baciu M, Hot P (2014) Amygdalar atrophy in early Alzheimers disease. Curr Alzheimer Res 11(3):239–252

    Article  CAS  Google Scholar 

  8. Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, Schaffer B, Varpetian A, Tseng B, Ortiz F et al (2007) Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 130(7):1767–1776

    Article  Google Scholar 

  9. Medina D, deToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, Fleischman D, Bennett DA, Leurgans S, Turner DA, Stebbins GT (2006) White matter changes in mild cognitive impairment and ad: a diffusion tensor imaging study. Neurobiol Aging 27(5):663–672

    Article  Google Scholar 

  10. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  CAS  Google Scholar 

  11. Cherubini A, Péran P, Caltagirone C, Sabatini U, Spalletta G (2009) Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage 48(1):29–36

    Article  Google Scholar 

  12. Fellgiebel A, Wille P, Müller MJ, Winterer G, Scheurich A, Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18(1):101–108

    Article  Google Scholar 

  13. Kantarci K, Avula R, Senjem M, Samikoglu A, Zhang B, Weigand S, Przybelski S, Edmonson H, Vemuri P, Knopman DS et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74(22):1814–1821

    Article  CAS  Google Scholar 

  14. Billeci L, Badolato A, Bachi L, Tonacci A (2020) Machine learning for the classification of Alzheimers disease and its prodromal stage using brain diffusion tensor imaging data: a systematic review. Processes 8(9):1071

    Article  Google Scholar 

  15. Dyrba M, Ewers M, Wegrzyn M, Kilimann I, Plant C, Oswald A, Meindl T, Pievani M, Bokde AL, Fellgiebel A et al (2013) Robust automated detection of microstructural white matter degeneration in Alzheimers disease using machine learning classification of multicenter DTI data. PLoS ONE 8(5):64925

    Article  Google Scholar 

  16. O’Dwyer L, Lamberton F, Bokde AL, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O’Neill D, Bartley M, Collins DR et al (2012) Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS ONE 7(2):32441

    Article  Google Scholar 

  17. Lella E, Amoroso N, Bellotti R, Diacono D, La Rocca M, Maggipinto T, Monaco A, Tangaro S (2017) Machine learning for the assessment of Alzheimer’s disease through DTI. Applications of Digital Image Processing XL, vol 10396. SPIE, Bellingham, pp 239–246

    Google Scholar 

  18. Maggipinto T, Bellotti R, Amoroso N, Diacono D, Donvito G, Lella E, Monaco A, Scelsi MA, Tangaro S, Initiative ADN et al (2017) DTI measurements for Alzheimers classification. Phys Med Biol 62(6):2361

    Article  Google Scholar 

  19. Lella E, Pazienza A, Lofù D, Anglani R, Vitulano F (2021) An ensemble learning approach based on diffusion tensor imaging measures for Alzheimers disease classification. Electronics 10(3):249

    Article  Google Scholar 

  20. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    Article  Google Scholar 

  21. Lee G, Fujita H (2020) Deep learning in medical image analysis: challenges and applications, vol 1213. Springer, Cham

    Book  Google Scholar 

  22. Hazarika RA, Abraham A, Sur SN, Maji AK, Kandar D (2021) Different techniques for Alzheimers disease classification using brain images: a study. Int J Multimed Inf Retr 2021:1–20

    Google Scholar 

  23. Wang S-H, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimers disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):1–11

    Article  Google Scholar 

  24. Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M (2021) Deep transfer learning for Alzheimer neurological disorder detection. Multimed Tools Appl 80(20):30117–30142

    Article  Google Scholar 

  25. Naz S, Ashraf A, Zaib A (2022) Transfer learning using freeze features for Alzheimer neurological disorder detection using Adni dataset. Multimed Syst 28(1):85–94

    Article  Google Scholar 

  26. Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I, Song O-y (2019) Transfer learning assisted classification and detection of Alzheimers disease stages using 3d MRI scans. Sensors 19(11):2645

    Article  Google Scholar 

  27. Mehmood A, Maqsood M, Bashir M, Shuyuan Y (2020) A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sci 10(2):84

    Article  Google Scholar 

  28. Savaş S (2022) Detecting the stages of Alzheimers disease with pre-trained deep learning architectures. Arab J Sci Eng 47(2):2201–2218

    Article  Google Scholar 

  29. Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Maqsood M, Yaqub M (2021) A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images. Neuroscience 460:43–52

    Article  CAS  Google Scholar 

  30. Kang L, Jiang J, Huang J, Zhang T (2020) Identifying early mild cognitive impairment by multi-modality MRI-based deep learning. Front Aging Neurosci 12:206

    Article  Google Scholar 

  31. Jiang J, Kang L, Huang J, Zhang T (2020) Deep learning based mild cognitive impairment diagnosis using structure MR images. Neurosci Lett 730:134971

    Article  CAS  Google Scholar 

  32. Eroglu Y, Yildirim M, Cinar A (2022) MRMR-based hybrid convolutional neural network model for classification of Alzheimer’s disease on brain magnetic resonance images. Int J Imaging Syst Technol 32(2):517–527

    Article  Google Scholar 

  33. Massalimova A, Varol H.A (2021) Input agnostic deep learning for alzheimers disease classification using multimodal MRI images. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2875–2878. IEEE

  34. Aderghal K, Afdel K, Benois-Pineau J, Catheline G, Initiative ADN et al (2020) Improving Alzheimer’s stage categorization with convolutional neural network using transfer learning and different magnetic resonance imaging modalities. Heliyon 6(12):05652

    Article  Google Scholar 

  35. Marzban EN, Eldeib AM, Yassine IA, Kadah YM, Initiative ADN (2020) Alzheimers disease diagnosis from diffusion tensor images using convolutional neural networks. PLoS ONE 15(3):0230409

    Article  Google Scholar 

  36. Ahmed OB, Benois-Pineau J, Allard M, Catheline G, Amar CB, Initiative ADN et al (2017) Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple kernel learning. Neurocomputing 220:98–110

    Article  Google Scholar 

  37. Perez-Gonzalez J, Jiménez-Ángeles L, Saavedra KR, Morales EB, Medina-Bañuelos V, Initiative ADN et al (2021) Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers. Phys Med Biol 66(15):155010

    Article  Google Scholar 

  38. Fang M, Jin Z, Qin F, Peng Y, Jiang C, Pan Z (2022) Re-transfer learning and multi-modal learning assisted early diagnosis of Alzheimers disease. Multimed Tools Appl 2022:1–17

    Google Scholar 

  39. Agostinho D, Caramelo F, Moreira AP, Santana I, Abrunhosa A, Castelo-Branco M (2021) Combined structural MR and diffusion tensor imaging classify the presence of Alzheimers disease with the same performance as MR combined with amyloid positron emission tomography: a data integration approach. Front Neurosci 15:638175

    Article  Google Scholar 

  40. Petersen RC, Aisen P, Beckett LA, Donohue M, Gamst A, Harvey DJ, Jack C, Jagust W, Shaw L, Toga A et al (2010) Alzheimer’s disease neuroimaging initiative (Adni): clinical characterization. Neurology 74(3):201–209

    Article  Google Scholar 

  41. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam

    Google Scholar 

  42. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62(2):782–790

    Article  Google Scholar 

  43. Cusano C, Ciocca G, Schettini R (2003) Image annotation using SVM. Internet imaging V, vol 5304. SPIE, Bellingham, pp 330–338

    Chapter  Google Scholar 

  44. Raju M, Gopi VP, Anitha V, Wahid KA (2020) Multi-class diagnosis of Alzheimers disease using cascaded three dimensional-convolutional neural network. Phys Eng Sci Med 43(4):1219–1228

    Article  Google Scholar 

  45. Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, Li H, Zhang F, Wu Z, Yao E et al (2020) Automated MRI-based deep learning model for detection of Alzheimers disease process. Int J Neural Syst 30(06):2050032

    Article  Google Scholar 

  46. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1

    Google Scholar 

Download references

Acknowledgements

This project was developped by the LASICOM laboratory of University of Blida 1, Department of Electrical Engineering. The authors would like to acknowledge the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for the public sharing of these precious neuroimaging data (http://adni.loni.usc.edu). We are thankful to the General Directorate of Scientific Research and Technological Development (DGRSDT) for their support in developing this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the work leading up to the manuscript. All sources used are properly disclosed (correct citation).

Corresponding author

Correspondence to Latifa Houria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Reserach involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houria, L., Belkhamsa, N., Cherfa, A. et al. Multi-modality MRI for Alzheimer’s disease detection using deep learning. Phys Eng Sci Med 45, 1043–1053 (2022). https://doi.org/10.1007/s13246-022-01165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-022-01165-9

Keywords

Navigation