Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

State- and Control-Dependent Incentives in a Closed-Loop Supply Chain with Dynamic Returns

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper analyzes two incentive schemes available for a closed-loop supply chain (CLSC) in which a manufacturer and a retailer contribute to the return rate dynamics through their investments in green activity programs. Both firms have economic motivations to perform the return rate because customers who return end-of-use goods also repurchase new ones. In addition, the manufacturer exploits the returns’ residual value in operations to increase profits. Because the manufacturer has both operational and marketing motivations to close the loop, he can provide an incentive to the retailer to boost her investments in green activity programs. The incentive can be either state dependent or control dependent. The former assumes that the incentive depends on the fraction of customers who are willing to return end-of-use products; the latter is proportional to the retailer’s green activity programs efforts. Our results show that a state-dependent incentive is profit-Pareto-improving only when the retailer’s environmental effectiveness is large. In contrast, a control-dependent incentive mechanism is profit-Pareto-improving for low incentive values, high retailer’s environmental effectiveness, and customers’ repurchasing intention. In all other cases, players have divergent preferences and neither mechanism coordinates the CLSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We assume \(\kappa _{i}=1\) as it will be always possible to evaluate the marginal impact on profits function through the effectiveness that GAP strategies exert inside the state equation.

  2. As it will be demonstrated later, \(M\) is willing to incentivize \(R\) to perform the return rate as long as she shows a larger operational effectiveness.

  3. We use the superscript \(P\) to refer to a per-return incentive.

References

  1. Bhattacharya S, Guide VDR, Van Wassenhove LN (2006) Optimal order quantities with remanufacturing across new product generations. Prod Oper Manag 15(3):421–431

    Article  Google Scholar 

  2. Cachon GP (2003) Supply chain coordination with contracts. In: Graves S, de Kok T (eds) Handbooks in operations research and management science: supply chain management. North-Holland, Amsterdam

    Google Scholar 

  3. Corbett C, DeCroix G (2001) Shared savings contracts in supply chains. Manag Sci 47(7):881–893

    Article  MATH  Google Scholar 

  4. Corbett CJ, Savaskan RC (2003) Contracting and coordination in closed-loop supply chains. In: Daniel V, Guide R Jr, Van Wassenhove LN (eds) Business aspects of closed-loop supply chains: exploring the issues. Carnegie Mellon University Press, Pittsburgh, PA

    Google Scholar 

  5. De Giovanni P (2014) Environmental collaboration through a reverse revenue sharing contract. Ann Oper Research 6:1–23

  6. De Giovanni P, Roselli (2012) Overcoming the drawbacks of a revenue sharing contract through a coop program. Ann Oper Research 196(1):201–222

  7. De Giovanni P, Zaccour G (2013) Cost-revenue sharing in a closed loop supply chain. Ann Int Soc Dyn Games 12:395–421

  8. De Giovanni P, Zaccour G (2014) A two period model of closed-loop supply chain. Eur J Oper Res 1(1):22–24

    Article  MATH  Google Scholar 

  9. Debo LG, Toktay LB, Van Wassenhove LN (2005) Market segmentation and product technology selection for remanufacturable products. Manag Sci 51(8):1193–1205

    Article  Google Scholar 

  10. Ferguson ME, Toktay LB (2006) The effect of competition on recovery strategies. Prod Oper Manag 15(3):351–368

    Article  Google Scholar 

  11. Ferrer G, Swaminathan JM (2006) Managing new and remanufactured products. Manag Sci 52(1):15–26

    Article  MATH  Google Scholar 

  12. Fleischmann M, Krikke HR, Dekker R, Flapper SDP (2000) A characterisation of logistics networks for product. Omega Int J Manag Sci 28(6):653–666

    Article  Google Scholar 

  13. Fleischmann M, van Nunen J, Grave B (2003) Integrating closed-loop supply chains and spare parts in IBM. Interface 33(6):44–56

    Article  Google Scholar 

  14. Geyer R, Van Wassenhove LN, Atasu A (2007) The economics of remanufacturing under limited component durability and finite product life cycles. Manag Sci 53(1):88–10

    Article  MATH  Google Scholar 

  15. Guide VDR Jr (2000) Production planning and control for remanufacturing: industry practice and research needs. J Oper Manag 18(4):467–483

    Article  Google Scholar 

  16. Guide VDR, Van Wassenhove LN (2009) The evolution of closed-loop supply chain research. Oper Res 57(1):10–18

    Article  MATH  Google Scholar 

  17. Ingene C, Taboubi S, Zaccour G (2012) Game-theoretic coordination mechanisms in distribution channels: integration and extensions for models without competition. J Retail 88(4):476–496

    Article  Google Scholar 

  18. Jørgensen S (2011) Intertemporal contracting in a supply chain. Dyn Games Appl 1(2):280–300

  19. Kang S, Hur WM (2012) Investigating the antecedents of green brand equity: a sustainable development perspective. Corp Soc Responsib Environ Mgmt 1(9):306–316

  20. Majumder P, Groenevelt H (2001) Competition in remanufacturing. Prod Oper Manag 10(2):125–141

    Article  Google Scholar 

  21. Savaskan RC, Bhattacharya S, Van Wassenhove LN (2004) Closed loop supply chain models with product remanufacturing. Manag Sci 50(2):239–252

    Article  MATH  Google Scholar 

  22. Savaskan RC, Van Wassenhove LN (2006) Reverse channel design: the case of competing retailers. Manag Sci 52(1):1–14

    Article  MATH  Google Scholar 

  23. Scholt A, De Giovanni P, Esposito Vinzi V (2014) Is environmental management an economically sustainable business? J Environ Manag 144(1):73–82

  24. Seitz MA, Peattie K (2004) Meeting the closed-loop challenge: the case of remanufacturing. Calif Manag Rev 46(2):74–89

    Article  Google Scholar 

  25. Souza GC (2013) Closed-loop supply chains: a critical review, and future research. Decis Sci 44(1):7–38

    Article  Google Scholar 

  26. van Hoek RI (1999) From reversed logistics to green supply chains. Supply Chain Manag Int J 4(3):129–134

    Article  Google Scholar 

  27. Yusof JM, Musa R, Rahman SA (2012) The effects of green image of retailers on shopping value and store loyalty. Proc Soc Behav Sci 50:710–721

    Article  Google Scholar 

Websites

  1. www.epa.gov

  2. www.expert-italia.it

  3. www.staple.com

Download references

Acknowledgments

I wish to thank three anonymous reviewers and Editor Georges Zaccour for very helpful comments. Any remaining errors are the responsibility of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Giovanni.

Appendices

Appendix 1

Proof of Proposition 1

In the non-coordinated scenario, we search for a pair of bounded and continuously differentiable value functions \( V_{M}^{B}\left( r^{B}\right) ,V_{R}^{B}\left( r^{B}\right) \) for which a unique solution for \(r^{B}\left( t\right) \) does exist, and the Hamilton–Jacobi–Bellman (HJB) equations:

$$\begin{aligned} \rho V_{M}^{B}\left( r^{B}\right)&= \left( \alpha +r^{B}\theta -\beta p^{B}\right) \left( \omega ^{B}+r^{B}\varDelta \right) -\frac{A_{M}^{B^{2}}}{2} +V_{M}^{B^{\prime }}\left( aA_{M}^{B}+bA_{R}^{B}-\delta r^{B}\right) \end{aligned}$$
(36)
$$\begin{aligned} \rho V_{R}^{B}\left( r^{B}\right)&= \left( \alpha +r^{B}\theta -\beta p^{B}\right) \left( p^{B}-\omega ^{B}\right) -\frac{A_{R}^{B^{2}}}{2} +V_{R}^{B^{\prime }}\left( aA_{M}^{B}+bA_{R}^{B}-\delta r^{B}\right) \nonumber \\ \end{aligned}$$
(37)

are satisfied for any value of \(r^{B}\in (0,1].\) Maximization of the \(R\)’s HJB gives pricing and \(R\)’s GAP strategies.

$$\begin{aligned} p^{B}\left( r^{B}\right)&= \frac{\alpha +r^{B}\theta +\beta \omega ^{B}}{2\beta } \end{aligned}$$
(38)
$$\begin{aligned} A_{R}^{B}&= bV_{R}^{B^{\prime }} \end{aligned}$$
(39)

Substituting Eqs. (38) and (39) inside \(M\)’s HJB provides:

$$\begin{aligned} \rho V_{M}^{B}\left( r^{B}\right) =\left( \frac{\alpha +r^{B}\theta -\beta \omega ^{B}}{2}\right) \left( \omega ^{B}+r^{B}\varDelta \right) -\frac{ A_{M}^{B^{2}}}{2}+V_{M}^{B^{\prime }}\left( aA_{M}^{B}+b^{2}V_{R}^{B^{\prime }}-\delta r^{B}\right) \end{aligned}$$
(40)

Maximization of Eq. (40) with respect to \(M\prime s\) GAP strategies and wholesale price gives

$$\begin{aligned} A_{M}^{B}&= aV_{M}^{B^{\prime }} \end{aligned}$$
(41)
$$\begin{aligned} \omega ^{B}\left( r^{B}\right)&= \frac{\alpha +r^{B}\left( \theta -\varDelta \beta \right) }{2\beta } \end{aligned}$$
(42)

Substituting Eq. (42) in (38), pricing results:

$$\begin{aligned} p^{B}\left( r^{B}\right) =\frac{3\alpha +r^{B}\left( 3\theta -\varDelta \beta \right) }{4\beta } \end{aligned}$$
(43)

Plagging Eqs. (43), (42), (39), and (41) in Eqs. (40) and (37), it provides

$$\begin{aligned} \rho V_{M}^{B}\left( r^{B}\right)&= \frac{1}{2\beta }\left( \frac{\alpha +r^{B}\left( \theta +\varDelta \beta \right) }{2}\right) ^{2}+V_{M}^{B^{\prime }}\left( \frac{a^{2}V_{M}^{B^{\prime }}}{2}+b^{2}V_{R}^{B^{\prime }}-\delta r^{B}\right) \end{aligned}$$
(44)
$$\begin{aligned} \rho V_{R}^{B}\left( r^{B}\right)&= \frac{1}{\beta }\left( \frac{\alpha +r^{B}\left( \theta +\varDelta \beta \right) }{4}\right) ^{2}+V_{R}^{B^{\prime }}\left( a^{2}V_{M}^{B^{\prime }}+\frac{b^{2}V_{R}^{B^{\prime }}}{2}-\delta r^{B}\right) \end{aligned}$$
(45)

We conjecture quadratic value functions \(V_{M}^{B}\left( r^{B}\right) =\frac{ d_{1}}{2}r^{B^{2}}+d_{2}r^{B}+d_{3}\) and \(V_{R}^{B}\left( r^{B}\right) = \frac{f_{1}}{2}r^{B^{2}}+f_{2}r^{B}+f_{3},\) where the pairs \(\left( d_{j},f_{j}\right) ,j=1\ldots 3\) are the constant parameters to be identified. Substituting our conjectures and their derivatives in Eqs. (44) and (45) gives

$$\begin{aligned}&8\beta \rho \left( \frac{d_{1}}{2}r^{B^{2}}+d_{2}r^{B}+d_{3}\right) =\left( \alpha +r^{B}\left( \theta +\varDelta \beta \right) \right) ^{2} \nonumber \\&\quad +\,4\beta \left( d_{1}r^{B}+d_{2}\right) \left( a^{2}\left( d_{1}r^{B}+d_{2}\right) +2b^{2}\left( f_{1}r^{B}+f_{2}\right) -2\delta r^{B}\right) \end{aligned}$$
(46)
$$\begin{aligned}&16\beta \rho \left( \frac{f_{1}}{2}r^{B^{2}}+f_{2}r^{B}+f_{3}\right) =\left( \alpha +r^{B}\left( \theta +\varDelta \beta \right) \right) ^{2} \nonumber \\&\quad +\,8\beta \left( f_{1}r^{B}+f_{2}\right) \left( 2a^{2}\left( d_{1}r^{B}+d_{2}\right) +b^{2}\left( f_{1}r^{B}+f_{2}\right) -2\delta r^{B}\right) \end{aligned}$$
(47)

By identification, the constant parameters can be derived by solving the following set of coupled algebraic Riccati equations:

$$\begin{aligned} \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+4\beta \left( 2b^{2}f_{1}-2\delta -\rho \right) d_{1}+4a^{2}\beta d_{1}^{2}&= 0 \end{aligned}$$
(48)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +4b^{2}\beta d_{1}f_{2}+4\beta \left( a^{2}d_{1}+b^{2}f_{1}-\delta -\rho \right) d_{2}\right)&= 0 \end{aligned}$$
(49)
$$\begin{aligned} \alpha ^{2}+4\beta \left( 2b^{2}f_{2}+a^{2}d_{2}\right) d_{2}-8\beta \rho d_{3}&= 0 \end{aligned}$$
(50)
$$\begin{aligned} \left( \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+8\beta \left( 2a^{2}d_{1}-2\delta -\rho \right) f_{1}+8b^{2}\beta f_{1}^{2}\right)&= 0 \end{aligned}$$
(51)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +8a^{2}\beta d_{2}f_{1}+8\beta \left( a^{2}d_{1}+b^{2}f_{1}-\delta -\rho \right) f_{2}\right)&= 0 \end{aligned}$$
(52)
$$\begin{aligned} \alpha ^{2}+8\beta \left( 2a^{2}d_{2}+b^{2}f_{2}\right) f_{2}-16\rho \beta f_{3}&= 0 \end{aligned}$$
(53)

To derive the coefficients, we can start from Eq. (48) and obtain \(f_{1}\) as a function of \(d_{1}:f_{1}=f\left( d_{1}\right) \) where

$$\begin{aligned} f\left( d_{1}\right) =\frac{4\beta d_{1}\left( 2\delta +\rho -a^{2}d_{1}^{{}}\right) -B_{3}}{8\beta b^{2}f_{1}d_{1}}=\varOmega _{1} \end{aligned}$$
(54)

with \(B_{3}=\varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}\). Substituting Eq. (54) for Eqs. (49) and (52), we can derive both \(d_{2}\) and \( f_{2} \) as a function of \(d_{1}\)

$$\begin{aligned} d_{2}\left( d_{1}\right)&= \frac{b^{2}d_{1}-2B_{4}}{8\beta \left( B_{1}^{2}-a^{2}b^{2}d_{1}\varOmega _{1}\right) }B_{2}=\varOmega _{2} \end{aligned}$$
(55)
$$\begin{aligned} f_{2}\left( d_{1}\right)&= \frac{2a_{1}^{2}\varOmega -B_{4}}{8\beta \left( B_{1}^{2}-a^{2}b^{2}d_{1}\varOmega _{1}\right) }B_{2}=\varOmega _{3} \end{aligned}$$
(56)

with \(B_{1}=a^{2}m_{1}^{*}+b^{2}n_{1}^{*}-\delta -\rho <0,\, B_{2}=\alpha \left( \theta +\varDelta \beta \right) >0,\, B_{4}=a^{2}d_{1}+b^{2}\varOmega _{1}-\delta -\rho \). We then substitute Eqs. (55) and (56) in Eqs. (50) and (53) to derive \(d_{3}\) and \(f_{3}\) as a function of \(d_{1}\):

$$\begin{aligned} d_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+4\beta \left( 2b^{2}\varOmega _{3}+a^{2}\varOmega _{2}\right) \varOmega _{2}}{8\beta \rho }=\varOmega _{4} \end{aligned}$$
(57)
$$\begin{aligned} f_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+8\beta \left( 2a^{2}\varOmega _{2}+b^{2}\varOmega _{3}\right) \varOmega _{3}}{16\rho \beta }=\varOmega _{5} \end{aligned}$$
(58)

Finally, replacing Eq. (54) into (51) gives a nonlinear equation that we have solved numerically in Mathematica 6.0.\(\square \)

Proof of Proposition 2

To show the inefficiency of a per-return incentive mechanism, we need to search for a pair of bounded and continuously differentiable value functions \(V_{M}^{P}\left( r^{P}\right) ,V_{R}^{P}\left( r^{P}\right) \) for which a unique solution for \(r^{P}\left( t\right) \) exists, and the HJBs are as follows:

$$\begin{aligned} \rho V_{M}^{P}\left( r^{P}\right)&= \left( \alpha +r^{P}\theta -\beta p^{P}\right) \left( \omega ^{P}+r^{P}\varDelta -\mu r^{P}\right) \nonumber \\&-\,\frac{ A_{M}^{P^{2}}}{2}+V_{M}^{P^{\prime }}\left( aA_{M}^{P}+bA_{R}^{P}-\delta r^{P}\right) \end{aligned}$$
(59)
$$\begin{aligned} \rho V_{R}^{P}\left( r^{P}\right)&= \left( \alpha +r^{P}\theta -\beta p^{P}\right) \left( p^{P}-\omega ^{P}+\mu r^{P}\right) \nonumber \\&-\,\frac{A_{R}^{P^{2}}}{ 2}+V_{R}^{P^{\prime }}\left( aA_{M}^{P}+bA_{R}^{P}-\delta r^{P}\right) \end{aligned}$$
(60)

Because the coordination game also has a leader–follower structure where \(M\) is the leader, we start from the maximization of \(R\)’s HJB with respect to price and GAP strategies:

$$\begin{aligned} p^{P}\left( r^{P}\right)&= \frac{\alpha +\beta \omega ^{P}+\left( \theta -\beta \mu \right) r^{P}}{2\beta } \end{aligned}$$
(61)
$$\begin{aligned} A_{R}^{P}&= bV_{R}^{P^{\prime }} \end{aligned}$$
(62)

Substituting Eqs. (61) and (62) inside \(M\)’s HJB gives

$$\begin{aligned} \rho V_{M}^{P}\left( r^{P}\right)&= \left( \frac{\alpha -\beta \omega ^{P}+\left( \theta +\beta \mu \right) r^{P}}{2}\right) \left( \omega ^{P}+r^{P}\varDelta -\mu r^{P}\right) -\frac{A_{M}^{P^{2}}}{2}\nonumber \\&\quad +V_{M}^{P^{\prime }}\left( aA_{M}^{P}+bA_{R}^{P}-\delta r^{P}\right) \end{aligned}$$
(63)

whose maximization with respect to wholesale price and GAP strategies yields:

$$\begin{aligned} \omega ^{P}\left( r^{P}\right)&= \frac{\alpha +\left( \theta +\left( 2\mu -\varDelta \right) \beta \right) r^{P}}{2\beta } \end{aligned}$$
(64)
$$\begin{aligned} A_{M}^{P}&= aV_{M}^{P^{\prime }} \end{aligned}$$
(65)

Plugging Eq. (64) in Eq. (61) leads to

$$\begin{aligned} p^{P}\left( r^{P}\right) =\frac{3\alpha +r^{P}\left( 3\theta -\varDelta \beta \right) }{4\beta } \end{aligned}$$
(66)

Subsituiting Eqs. (64), (65), (66) and (62) in (63) and (60) gives

$$\begin{aligned} \rho V_{M}^{P}\left( r^{P}\right)&= \frac{\left( \alpha +\left( \theta +\varDelta \beta \right) r^{P}\right) ^{2}}{8\beta }+V_{M}^{P^{\prime }}\left( \frac{a^{2}V_{M}^{P^{\prime }}}{2}+b^{2}V_{R}^{P^{\prime }}-\delta r^{P}\right) \end{aligned}$$
(67)
$$\begin{aligned} \rho V_{R}^{P}\left( r^{P}\right)&= \frac{\left( \alpha +\left( \theta +\varDelta \beta \right) r^{P}\right) ^{2}}{16\beta }+V_{R}^{P^{\prime }}\left( a^{2}V_{M}^{P^{\prime }}+\frac{b^{2}V_{R}^{P^{\prime }}}{2}-\delta r^{P}\right) \end{aligned}$$
(68)

from which it turns out that \(V_{M}^{B}\left( r^{B}\right) =V_{M}^{P}\left( r^{P}\right) \) and \(V_{R}^{B}\left( r^{B}\right) =V_{R}^{P}\left( r^{P}\right) ,\) and thus, the implementation of a per-return incentive does not lead to any form of coordination.\(\square \)

Proof of Proposition 3

Here we follow the same steps as in the proof of Proposition 1 to derive the equilibrium strategies under the assumption that the CLSC is coordinated through a state-dependent incentive mechanism. The HJBs for this game are given by

$$\begin{aligned} \rho V_{M}^{S}\left( r^{S}\right)&= \left( \alpha +r^{S}\theta -\beta p^{S}\right) \left( \omega ^{S}+r^{S}\varDelta \right) -\mu r^{S}-\frac{ A_{M}^{S^{2}}}{2}+V_{M}^{S^{\prime }}\left( aA_{M}^{S}+bA_{R}^{S}-\delta r^{S}\right) \end{aligned}$$
(69)
$$\begin{aligned} \rho V_{R}^{S}\left( r^{S}\right)&= \left( \alpha +r^{S}\theta -\beta p^{S}\right) \left( p^{S}-\omega ^{S}\right) +\mu r^{S}-\frac{A_{R}^{S^{2}}}{ 2}+V_{R}^{S^{\prime }}\left( aA_{M}^{S}+bA_{R}^{S}-\delta r^{S}\right) \nonumber \\ \end{aligned}$$
(70)

Maximization of \(R\)’s HJB with respect to pricing and GAP strategies gives

$$\begin{aligned} p^{S}\left( r^{S}\right)&= \frac{\alpha +r^{S}\theta +\beta \omega ^{S}}{ 2\beta } \end{aligned}$$
(71)
$$\begin{aligned} A_{R}^{S}&= bV_{R}^{S^{\prime }} \end{aligned}$$
(72)

These expressions must be satisfied by the pricing and \(R\)’s GAP strategies. Replacing Eqs. (71) and (72) inside Eq. (69), it gives the following expression:

$$\begin{aligned} \rho V_{M}^{S}\left( r^{S}\right)&= \left( \frac{\alpha +r^{S}\theta -\beta \omega ^{S}}{2}\right) \left( \omega ^{S}+r^{S}\varDelta \right) -\mu r^{S}\nonumber \\&-\,\frac{\left( A_{M}^{S}\right) ^{2}}{2}+V_{M}^{S^{\prime }}\left( aA_{M}^{S}+b^{2}V_{R}^{S^{\prime }}-\delta r^{S}\right) \end{aligned}$$
(73)

\(M\)’s GAP equilibrium strategy is characterized by

$$\begin{aligned} \omega ^{S}\left( r^{S}\right)&= \frac{\alpha +r^{S}\left( \theta -\varDelta \beta \right) }{2\beta } \end{aligned}$$
(74)
$$\begin{aligned} A_{M}^{S}&= aV_{M}^{S^{\prime }} \end{aligned}$$
(75)

Plugging Eq. (74) inside (71), it gives

$$\begin{aligned} p^{S}\left( r^{S}\right) =\frac{3\alpha +r^{S}\left( 3\theta -\varDelta \beta \right) }{4\beta } \end{aligned}$$
(76)

Substituting, (72), (74) and (75), (76) inside Eqs. (70), and (73), the HBJ become:

$$\begin{aligned} \rho V_{M}^{S}\left( r^{S}\right)&= \frac{1}{2\beta }\left( \frac{\alpha +r^{S}\left( \theta +\varDelta \beta \right) }{2}\right) ^{2}-\mu r^{S}+V_{M}^{S^{\prime }}\left( \frac{a^{2}V_{M}^{S^{\prime }}}{2} +b^{2}V_{R}^{S^{\prime }}-\delta r^{S}\right) \end{aligned}$$
(77)
$$\begin{aligned} \rho V_{R}^{S}\left( r^{S}\right)&= \frac{1}{\beta }\left( \frac{\alpha +r^{S}\left( \theta +\varDelta \beta \right) }{4}\right) ^{2}+\mu r^{S}+V_{R}^{S^{\prime }}\left( a^{2}V_{M}^{S^{\prime }}+\frac{ b^{2}V_{R}^{S^{\prime }}}{2}-\delta r^{S}\right) \end{aligned}$$
(78)

We can conjecture quadratic value functions also in this scenario, specifically: \(V_{M}^{S}\left( r^{S}\right) =\frac{m_{1}}{2} r^{S^{2}}+m_{2}r^{S}+m_{3}\) and \(V_{R}^{S}\left( r^{S}\right) =\frac{n_{1}}{2 }r^{S^{2}}+n_{2}r^{S}+n_{3},\) where the pairs \(\left( m_{j},n_{j}\right) ,j=1\ldots 3\) are the constant parameters to be identified. Substituting the value functions and their derivatives inside Eqs. (77) and (78), the constant parameters can be identified solving the following set of coupled Riccati equations:

$$\begin{aligned} \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+4\beta \left( 2b^{2}n_{1}-2\delta -\rho \right) m_{1}+4a^{2}\beta m_{1}^{2}&= 0 \end{aligned}$$
(79)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +4b^{2}\beta m_{1}n_{2}+4\beta \left( a^{2}m_{1}+b^{2}n_{1}-\delta -\rho -\mu \right) m_{2}\right)&= 0 \end{aligned}$$
(80)
$$\begin{aligned} \alpha ^{2}+4\beta \left( 2b^{2}n_{2}+a^{2}m_{2}\right) m_{2}-8\beta \rho m_{3}&= 0 \end{aligned}$$
(81)
$$\begin{aligned} \left( \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+8\beta \left( 2a^{2}m_{1}-2\delta -\rho \right) n_{1}+8b^{2}\beta n_{1}^{2}\right)&= 0 \end{aligned}$$
(82)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +8a^{2}\beta m_{2}n_{1}+8\beta \left( a^{2}m_{1}+b^{2}n_{1}-\delta -\rho +\mu \right) n_{2}\right)&= 0 \end{aligned}$$
(83)
$$\begin{aligned} \alpha ^{2}+8\beta \left( 2a^{2}m_{2}+b^{2}n_{2}\right) n_{2}-16\rho \beta n_{3}&= 0 \end{aligned}$$
(84)

The coefficients can be simply derived as \(m_{1}=d_{1}\) and \(n_{1}=f_{1}.\) Thus, we can obtain \(n_{1}\) as a function of \(d_{1}:n_{1}=f_{1}=f\left( d1\right) =\varOmega _{1}\) as it is displayed in Eq. (54). Substituting Eq. (54) for Eqs. (80) and (83), we can derive both \(m_{2}\) and \(n_{2}\) as a function of \(d_{1}\)

$$\begin{aligned} m_{2}\left( d_{1}\right)&= \frac{b^{2}d_{1}-2\mu -2B_{4}}{8\beta \left( B_{4}^{2}-\mu ^{2}-a^{2}b^{2}d_{1}\varOmega _{1}\right) }B_{2}=\varOmega _{6} \end{aligned}$$
(85)
$$\begin{aligned} n_{2}\left( d_{1}\right)&= \frac{2a_{1}^{2}\varOmega +\mu -B_{4}}{8\beta \left( B_{4}^{2}-\mu ^{2}-a^{2}b^{2}d_{1}\varOmega _{1}\right) }B_{2}=\varOmega _{7} \end{aligned}$$
(86)

We then substitute Eqs. (85) and (86) in Eqs. (81) and (84) to derive \(m_{3}\) and \(n_{3}\) as a function of \(d_{1}\):

$$\begin{aligned} m_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+4\beta \left( 2b^{2}\varOmega _{7}+a^{2}\varOmega _{6}\right) \varOmega _{6}}{8\beta \rho }=\varOmega _{8} \end{aligned}$$
(87)
$$\begin{aligned} n_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+8\beta \left( 2a^{2}\varOmega _{6}+b^{2}\varOmega _{7}\right) \varOmega _{7}}{16\rho \beta }=\varOmega _{9} \end{aligned}$$
(88)

See Proof of Proposition 1 to check the solution for \(d_{1}\).\(\square \)

Proof of Proposition 6

This proof follows the proof for Proposition 2, with the difference that the incentive depends on the control \( A_{R}^{C}\left( r^{C}\right) \). The HJB functions should be written as follows:

$$\begin{aligned} \rho V_{M}^{C}\left( r^{C}\right)&= \left( \alpha +r^{C}\theta -\beta p^{C}\right) \left( \omega ^{C}+r^{C}\varDelta \right) -\mu A_{R}^{C}\nonumber \\&\quad -\,\frac{ A_{M}^{C^{2}}}{2}+V_{M}^{C^{\prime }}\left( aA_{M}^{C}+bA_{R}^{C}-\delta r^{C}\right) \end{aligned}$$
(89)
$$\begin{aligned} \rho V_{R}^{C}\left( r^{C}\right)&= \left( \alpha +r^{C}\theta -\beta p^{C}\right) \left( p^{C}-\omega ^{C}\right) +\mu A_{R}^{C}\nonumber \\&\quad -\,\frac{ A_{R}^{C^{2}}}{2}+V_{R}^{C^{\prime }}\left( aA_{M}^{C}+bA_{R}^{C}-\delta r^{C}\right) \end{aligned}$$
(90)

Maximization of \(R\)’s HJB gives pricing and \(R\)’s GAP strategies:

$$\begin{aligned} p^{C}\left( r^{C}\right)&= \frac{\alpha +r^{C}\theta +\beta \omega ^{C}}{ 2\beta } \end{aligned}$$
(91)
$$\begin{aligned} A_{R}&= bV_{R}^{C^{\prime }}+\mu \end{aligned}$$
(92)

Substituting these strategies inside Eq. (89) to get

$$\begin{aligned} V_{M}^{C}\left( r^{C}\right)&= \left( \frac{\alpha +r^{C}\theta -\beta \omega ^{C}}{2}\right) \left( \omega ^{C}+r^{C}\varDelta \right) -\mu \left( bV_{R}^{C^{\prime }}+\mu \right) -\frac{A_{M}^{C^{2}}}{2}\nonumber \\&\quad +\,V_{M}^{C^{\prime }}\left( aA_{M}^{C}+b\left( bV_{R}^{C^{\prime }}+\mu \right) -\delta r^{C}\right) \end{aligned}$$
(93)

First-order condition for \(M\)’s GAP strategy gives

$$\begin{aligned} \omega ^{C}\left( r^{C}\right)&= \frac{\alpha +r^{C}\left( \theta -\varDelta \beta \right) }{2\beta } \end{aligned}$$
(94)
$$\begin{aligned} A_{M}^{C}&= aV_{M}^{C^{\prime }} \end{aligned}$$
(95)

Plugging Eq. (94) inside (91) gives

$$\begin{aligned} p^{C}\left( r^{C}\right) =\frac{3\alpha +r^{C}\left( 3\theta -\varDelta \beta \right) }{4\beta } \end{aligned}$$
(96)

Substitute Eqs. (92), (94), (95), (96) in (90) and (93) to get

$$\begin{aligned} \rho V_{M}^{C}\left( r^{C}\right)&= \frac{1}{2\beta }\left( \frac{\alpha +r^{C}\left( \theta +\varDelta \beta \right) }{2}\right) ^{2}\nonumber \\&\quad +\,\left( bV_{M}^{C^{\prime }}-\mu \right) \left( bV_{R}^{C^{\prime }}+\mu \right) +V_{M}^{C^{\prime }}\left( \frac{a^{2}V_{M}^{C^{\prime }}}{2}-\delta r^{C}\right) \end{aligned}$$
(97)
$$\begin{aligned} \rho V_{R}^{C}\left( r^{C}\right)&= \frac{1}{\beta }\left( \frac{\alpha +r^{C}\left( \theta +\varDelta \beta \right) }{4}\right) ^{2}+\frac{\left( bV_{R}^{C^{\prime }}+\mu \right) ^{2}}{2}+V_{R}^{C^{\prime }}\left( a^{2}V_{M}^{C^{\prime }}-\delta r^{C}\right) \end{aligned}$$
(98)

To obtain a solution for this game, we conjectured quadratic value functions, \(V_{M}^{C}\left( r^{C}\right) =\frac{l_{1}}{2} r^{C^{2}}+l_{2}r^{C}+l_{3}\) and \(V_{R}^{C}\left( r^{C}\right) =\frac{k_{1}}{2 }r^{C^{2}}+k_{2}r^{C}+k_{3},\) where \(\left( l_{j},k_{j}\right) ,j=1\ldots 3,\) are the constant parameters to be identified. Replacing our conjectures and their derivatives into Eqs. (97) and (98), it gives

$$\begin{aligned} 8\beta \rho \left( \frac{l_{1}}{2}r^{C^{2}}+l_{2}r^{C}+l_{3}\right)&= \left( \alpha +r^{C}\left( \theta +\varDelta \beta \right) \right) ^{2}+8\beta \left( bV_{M}^{C^{\prime }}-\mu \right) \left( bV_{R}^{C^{\prime }}+\mu \right) \nonumber \\&\quad +\,4\beta V_{M}^{C^{\prime }}\left( a^{2}V_{M}^{C^{\prime }}-2\delta r^{C}\right) \end{aligned}$$
(99)
$$\begin{aligned} 16\beta \rho \left( \frac{k_{1}}{2}r^{C^{2}}+k_{2}r^{C}+k_{3}\right)&= \left( \alpha +r^{C}\left( \theta +\varDelta \beta \right) \right) ^{2}+8\beta \left( bV_{R}^{C^{\prime }}+\mu \right) ^{2}\nonumber \\&\quad +\,16\beta V_{R}^{C^{\prime }}\left( a^{2}V_{M}^{C^{\prime }}-\delta r^{C}\right) \end{aligned}$$
(100)

We identified the constant parameters from the following set of coupled algebraic Riccati equations:

$$\begin{aligned} \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+4\beta \left( 2b^{2}k_{1}-2\delta -\rho \right) l_{1}+4\beta a^{2}l_{1}^{2}&= 0 \end{aligned}$$
(101)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +4\beta \left( b^{2}k_{2}l_{1}+\left( a^{2}l_{1}+b^{2}k_{1}-\delta -\rho \right) l_{2}\right) +b\mu \left( l_{1}-k_{1}\right) \right)&= 0 \end{aligned}$$
(102)
$$\begin{aligned} \left( \alpha ^{2}+4\beta \left( \left( 2b\mu +2b^{2}k_{2}+a^{2}l_{2}^{{}}\right) l_{2}-2\mu \left( \mu +bk_{2}\right) \right) \right) -8\beta \rho l_{3}&= 0 \end{aligned}$$
(103)
$$\begin{aligned} \varDelta \beta \left( 2\theta +\varDelta \beta \right) +\theta ^{2}+8\beta \left( 2a^{2}l_{1}-2\delta -\rho \right) k_{1}+8\beta b^{2}k_{1}^{2}&= 0 \end{aligned}$$
(104)
$$\begin{aligned} 2\left( \alpha \left( \theta +\varDelta \beta \right) +8\beta \left( \left( \left( a^{2}l_{1}+b^{2}k_{1}-\delta -\rho \right) k_{2}\right) +a^{2}k_{1}l_{2}\right) +b\mu k_{1}\right)&= 0 \end{aligned}$$
(105)
$$\begin{aligned} \left( \alpha ^{2}+8\beta \mu ^{2}+8\beta \left( 2a^{2}l_{2}+2b\mu +b^{2}k_{2}^{{}}\right) k_{2}\right) -16\beta \rho k_{3}&= 0 \end{aligned}$$
(106)

As for the state-dependent case, the coefficients \(l_{i},k_{i},i=1\ldots 3\) can be simply derived as \(l_{1}=d_{1}\) and \(k_{1}=f_{1}\). Thus, we can obtain \( k_{1}\) as a function of \(d_{1}:k_{1}=f_{1}=f\left( d1\right) =\varOmega _{1}\) as it is reported in Eq. (54). Substituting Eq. (54) for Eqs. (102) and (105), we can derive both \(l_{2}\) and \(k_{2}\) as a function of \( d_{1}\)

$$\begin{aligned} l_{2}\left( d_{1}\right)&= \frac{8b^{3}\beta \mu \varOmega _{1}d_{1}+8\mu \beta b\left( B_{4}+a^{2}d_{1}\right) \left( \varOmega _{1}-d_{1}\right) -\left( 2B_{4}+\left( 2a^{2}-b^{2}\right) \varOmega _{1}\right) B_{2}}{8\beta \left( B_{4}^{2}-a^{2}d_{1}\left( b_{{}}^{2}\varOmega _{1}-B_{4}\right) \right) }\nonumber \\&= \varOmega _{10} \end{aligned}$$
(107)
$$\begin{aligned} k_{2}\left( d_{1}\right)&= \frac{-B_{2}\left( B_{4}-2a_{{}}^{2}\varOmega _{1}\right) +8b\beta \mu k_{1}\left( a^{2}\left( d_{1}-\varOmega _{1}\right) -B_{4}\right) }{8\beta \left( B_{4}^{2}-a^{2}d_{1}\left( b^{2}\varOmega _{1}-B_{4}\right) \right) }=\varOmega _{11} \end{aligned}$$
(108)

We then substitute Eqs. (107) and (108) in Eqs. (103) and (106) to derive \(l_{3}\) and \(k_{3}\) as a function of \(d_{1}\):

$$\begin{aligned} l_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+4\beta \left( \left( 2b\mu +2b^{2}\varOmega _{11}+a^{2}\varOmega _{10}\right) \varOmega _{10}-2\mu \left( \mu +b\varOmega _{11}\right) \right) }{8\beta \rho }=\varOmega _{12} \end{aligned}$$
(109)
$$\begin{aligned} k_{3}\left( d_{1}\right)&= \frac{\alpha ^{2}+8\beta \mu ^{2}+8\beta \left( 2a^{2}\varOmega _{10}+2b\mu +b^{2}\varOmega _{11}\right) \varOmega _{11}}{16\rho \beta }=\varOmega _{13} \end{aligned}$$
(110)

See Proof of Proposition 1 to check the solution for \(d_{1}\). \(\square \)

Appendix 2

 

Solution \({\mathcal {I}}\)

Solution \({\mathcal {II}}\)

Solution \({\mathcal {III}}\)

Solution \({\mathcal {IV}}\)

\(A_{M}^{B}\left( r_{SS}^{B}\right) \)

.2096

.4397

.1098

\(-\).4544

\(A_{R}^{B}\left( r_{SS}^{B}\right) \)

.1028

.2027

\(-\).1582

.0687

\(r_{SS}^{B}\)

.3881

.7816

\(-\).3268

\(-\) .1121

\(V_{M}^{B}\left( r_{SS}^{B}\right) \)

.192

.5309

1.123

.0284

\(V_{R}^{B}\left( r_{SS}^{B}\right) \)

.0953

.2008

\(-\).0509

.0873

Steady-state \((SS)\) value of GAP efforts, return rates, and profits in scenario \(B.\) Bold values highlight the positivity assumptions that solutions \({\mathcal {III}}\) and \({\mathcal {IV}}\) violate

Appendix 3

Parameter values

\(A_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\( A_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(r_{SS}^{B}\in (0,1]\)

\( V_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(V_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(\delta -a^{2}d_{1}-b^{2}f_{1}>0\)

\(\alpha \)(1.1;1.2;1.3)

.23;.252;.272

.11;.12;.134

.426;.46;.505

.235;.284;.337

.115;.138;.134

.324;.324;.324

\(\beta \)(1.1;1.2;1.3)

.204;.2;.197

.1;.098;.097

.378;.371;.365

.176;.163;.152

.085;.079;.073

.322;.320;.317

\(\varDelta \)(.6;.7;.8)

.261;.329;.426

.127;.159;.204

.4812;.604;.777

.226;.287;.407

.109;.138;.194

.3025;.276;.246

\(\theta \)(.4;.5;.6)

.261;.329;.426

.127;.159;.204

.4812;.604;.777

.226;.287;.407

.109;.138;.194

.3025;.276;.246

a(.6;.7;.8)

.22;.234;.253

.109;.117;.128

.471;.58;.726

.211;.24;.289

.104;.12;.146

.312;.297;.28

b(1.1;.1.2;1.3)

.221;.235;.252

.107;.113;.12

.464;.555;.667

.211;.238;.277

.101;.113;.13

.313;.3;.287

\(\rho \)(.95;.97;.99)

.199;.195;.191

.097;.096;.094

.368;.361;.354

.177;.172;.167

.086;.084;.081

.327;.328;.329

\(\delta \)(.5;.6;.7)

.179;.158;.143

.088;.078;.071

.265;.196;.152

.169;.16;.154

.083;.078;.076

.433;.54;.646

  1. Sensitivity analysis on Solution \(\mathcal {I}\) in scenario \(B\). Note that \( m_{1}\) and \(n_{1}\) are not influenced by \(\alpha \) (see “Appendix 1”)

Parameter values

\(A_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(A_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(r^{B}\in (0,1]\)

\( V_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(V_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(\delta -a^{2}d_{1}-b^{2}f_{1}<0\)

\(\alpha \)(1.1;1.2;1.3)

.484;.528;.572

.223;.243;.263

.86;.937;1.02

.559;.568;.551

.225;.247;.266

\(-\)1.32;\(-\)1.32;\(-\)1.32

\(\beta \)(1.1;1.2;1.3)

.43;.425;.422

.198;.195;.193

.76;.754;.747

56;.499;.486

.19;.184;.178

\(-\)1.322;\(-\)1.323;\(-\)1.324

\(\varDelta \)(.6;.7;.8)

.581;.798;1.17

.363;.354;.514

1.022;1.34;2.02

.433;\(-\) .242;\(-\) 3.6

.21;.105; \(-\) .626

\(-\)1.327;\(-\)1.333;\(-\)1.339

\(\theta \)(.4;.5;.6)

.581;.798;1.17

.363;.354;.514

1.022;1.34;2.02

.433;\(-\) .242;\(-\) 3.6

.21;.105; \(-\) .626

\(-\)1.327;\(-\)1.333;\(-\)1.339

a(.6;.7;.8)

.471;.515;.579

.225;.257;.302

.987; 1.27;1.68

.412;.207;\(-\) .268

.198;.106;\(-\) .27

\(-\)1.312;\(-\)1.30;\(-\)1.287

b(1.1;.1.2;1.3)

.481;.533;.599

.215;.23;.25

.95; 1.16;1.43

.461;.173;\(-\) .6

.195;.172;.11

\(-\)1.33;\(-\)1.34;\(-\)1.35

\(\rho \)(.95;.97;.99)

.411;.4;.39

.19;.186;.181

.733;.715;.697

.525;.521;.518

.19;.188;.18

\(-\)1.371;\(-\)1.391;\(-\)1.411

\(\delta \)(.5;.6;.7)

.369;.327;.298

.172;.153;.141

.528;.392;.308

.471;.388;.327

.164;.135;.117

\(-\)1.42;\(-\)1.518;\(-\)1.617

  1. Sensitivity analysis on Solution \(\mathcal {II}\) in the \(B\)-scenario. Bold values indicate that some positivity assumptions as well as assumptions on \( r^{B}\in (0,1]\) are not met. Note that \(m_{1}\) and \(n_{1}\) are not influenced by \(\alpha \) (see “Appendix 1”) while stability condition for Solution \(\mathcal {II}\) requires \(\delta -a^{2}d_{1}-b^{2}f_{1}<0\) as \( d_{2}<0\) and \(f_{2}<0\)

Parameter values

\(A_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(A_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(r^{B}\in (0,1]\)

\( V_{M}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(V_{R}^{B}\left( r_{SS}^{B}\right) \ge 0\)

\(\delta -a^{2}d_{1}-b^{2}f_{1}<0\)

\(\alpha \)(1.1;1.2;1.3)

.484;.528;.572

.223;.243;.263

.86;.937;1.02

.559;.568;.551

.225;.247;.266

\(-\)1.32;\(-\)1.32;\(-\)1.32

\(\beta \)(1.1;1.2;1.3)

.43;.425;.422

.198;.195;.193

.76;.754;.747

56;.499;.486

.19;.184;.178

\(-\)1.322;\(-\)1.323;\(-\)1.324

\(\varDelta \)(.6;.7;.8)

.581;.798;1.17

.363;.354;.514

1.022;1.34;2.02

.433;\(-\) .242;\(-\) 3.6

.21;.105; \(-\) .626

\(-\)1.327;\(-\)1.333;\(-\)1.339

\(\theta \)(.4;.5;.6)

.581;.798;1.17

.363;.354;.514

1.022;1.34;2.02

.433;\(-\) .242;\(-\) 3.6

.21;.105; \(-\) .626

\(-\)1.327;\(-\)1.333;\(-\)1.339

a(.6;.7;.8)

.471;.515;.579

.225;.257;.302

.987; 1.27;1.68

.412;.207;\(-\) .268

.198;.106;\(-\) .27

\(-\)1.312;\(-\)1.30;\(-\)1.287

b(1.1;.1.2;1.3)

.481;.533;.599

.215;.23;.25

.95; 1.16;1.43

.461;.173;\(-\) .6

.195;.172;.11

\(-\)1.33;\(-\)1.34;\(-\)1.35

\(\rho \)(.95;.97;.99)

.411;.4;.39

.19;.186;.181

.733;.715;.697

.525;.521;.518

.19;.188;.18

\(-\)1.371;\(-\)1.391;\(-\)1.411

\(\delta \)(.5;.6;.7)

.369;.327;.298

.172;.153;.141

.528;.392;.308

.471;.388;.327

.164;.135;.117

\(-\)1.42;\(-\)1.518;\(-\)1.617

  1. Sensitivity analysis on Solution \(\mathcal {II}\) in the \(B\)-scenario. Bold values indicate that some positivity assumptions as well as assumptions on \( r^{B}\in (0,1]\) are not met. Note that \(m_{1}\) and \(n_{1}\) are not influenced by \(\alpha \) (see “Appendix 1”) while stability condition for Solution \(\mathcal {II}\) requires \(\delta -a^{2}d_{1}-b^{2}f_{1}<0\) as \( d_{2}<0\) and \(f_{2}<0\)

Parameter values

\(A_{M}^{C}\left( r_{SS}^{C}\right) \ge 0\)

\( A_{R}^{C}\left( r_{SS}^{C}\right) \ge 0\)

\(r^{C}\in (0,1]\)

\( V_{M}^{C}\left( r_{SS}^{C}\right) \ge 0\)

\(V_{R}^{C}\left( r_{SS}^{C}\right) \ge 0\)

\(\delta -a^{2}l_{1}-b^{2}k_{1}>0\)

\(\alpha \)(1.1;1.2;1.3)

.23;.25;.275

.114;.124;.135

.43;.47;.51

.214;.265;.321

.158;.184;.21

.324;.324;.324

\(\beta \)(1.1;1.2;1.3)

.223;.202;.199

.101;.099;.097

.383;.375;.369

.152;.138;.127

.126;.119;.114

.322;.320;.317

\(\varDelta \)(.6;.7;.8)

.265;.334;.434

.129;.162;.208

.488;.614;.791

.208;.276;.407

.155;.188;.25

.3025;.276;.246

\(\theta \)(.4;.5;.6)

.265;.334;.434

.129;.162;.208

.488;.614;.791

.208;.276;.407

.155;.188;.25

.3025;.276;.246

a(.6;.7;.8)

.223;.238;.257

.11;.12;.129

.477;.588;.736

.188;.219;.269

.146;.163;.191

.312;.297;.28

b(1.1;.1.2;1.3)

.224;.239;.257

.109;.115;.122

.47;.564;.678

.191;.223;.267

.146;.16;.18

.313;.3;.287

\(\rho \)(.95;.97;.99)

.201;.197;.193

.099;.097;.095

.373;.366;.358

.154;.149;.145

.125;.122;.118

.327;.328;.329

\(\delta \)(.5;.6;.7)

.18;.16;.144

.089;.079;.0716

.268;.198;.154

.143;.132;.126

.123;.116;.113

.433;.54;.646

\(\mu \)(.025;.05;.2)

.210;.210;.212

.1029;.103;.104

.388;.390;.393

.194;.195;.168

.096;.099;.135

.324;.324;.324

  1. Sensitivity analysis in the \(C\)-scenario. Note that all values for the stability condition are the same as in the benchmark as \(l_{1}=d_{1}\) and \( k_{1}=f_{1}\), which are also \(\mu \)-independent

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Giovanni, P. State- and Control-Dependent Incentives in a Closed-Loop Supply Chain with Dynamic Returns. Dyn Games Appl 6, 20–54 (2016). https://doi.org/10.1007/s13235-015-0142-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-015-0142-6

Keywords

Navigation