Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Das Fachgebiet „Enterprise Platform and Integration Concepts“ am Hasso-Plattner-Institut

  • Datenbankgruppen vorgestellt
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Zusammenfassung

Das 1998 gegründete Hasso-Plattner-Institut (HPI) ist ein privat finanziertes IT-Institut und bildet gemeinsam mit der Universität Potsdam die Fakultät „Digital Engineering“. Gründer und Namensgeber des Instituts ist der SAP-Mitgründer Hasso Plattner, welcher mit dem Fachgebiet „Enterprise Platform und Integration Concepts“ (EPIC) seine eigene Forschungsgruppe leitet. Diese beschäftigt sich mit der effizienten Verwaltung, Integration und Auswertung von Unternehmens- und Geschäftsprozessdaten. Dabei wird eng mit verschiedenen Unternehmen und deren Nutzer:innen zusammengearbeitet, um Herausforderungen zu identifizieren und Lösungen gemeinsam zu entwickeln. Gegründet wurde das EPIC-Fachgebiet 2006 und bietet zurzeit zwei Senior-Researchern, drei Postdoktoranden, 16 Doktorand:innen und 21 Masterstudent:innen eine Forschungsumgebung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bodner T (2020) Elastic query processing on function as a service platforms. In: VLDB PhD Workshop, CEUR 2652

    Google Scholar 

  2. Boissier M (2022) Robust and budget-constrained encoding configurations for in-memory database systems. PVLDB 15(4):780–793

    Google Scholar 

  3. Boissier M et al (2017) Data-driven repricing strategies in competitive markets: An interactive simulation platform. In: RecSys, S 355–357

    Google Scholar 

  4. Boissier M et al (2018) Hybrid data layouts for tiered HTAP databases with Pareto-optimal data placements. In: ICDE, S 209–220

    Google Scholar 

  5. Chenavaz R et al (2021) Dynamic pricing with reference price effects in integrated online and offline retailing. Int J Prod Res. https://doi.org/10.1080/00207543.2021.1973136

    Article  Google Scholar 

  6. Dobrigkeit F et al (2018) InnoDev - A software development methodology integrating design thinking, scrum and lean startup. In: Design thinking - research looking further: design thinking beyond solution-fixation, understanding innovation, S 199–228

    Google Scholar 

  7. Dobrigkeit F et al (2020) DT@IT Toolbox: Design thinking tools to support everyday software development. In: Design thinking research, S 201–227

    Google Scholar 

  8. Dobrigkeit F et al (2020) InnoDev Workshop: A one day introduction to combining design thinking, lean startup and agile software development. In: CSEE&T, S 1–10

    Google Scholar 

  9. Dobrigkeit F et al (2021) Joining forces: Applying design thinking techniques in scrum meetings. In: Design Thinking Research, S 315–345

    Google Scholar 

  10. Dreseler M et al (2019) Hyrise re-engineered: An extensible database system for research in relational in-memory data management. In: EDBT, S 313–324

    Google Scholar 

  11. Dreseler M et al (2020) Quantifying TPC‑H choke points and their optimizations. Proceedings VLDB Endowment 13(8):1206–1220

    Google Scholar 

  12. Färber F et al (2012) The SAP HANA database – an architecture overview. IEEE Data Eng Bull 35(1):28–33

    Google Scholar 

  13. Grund M et al (2010) HYRISE - A main memory hybrid storage engine. Proceedings VLDB Endowment 4(2):105–116

    MathSciNet  Google Scholar 

  14. Hagedorn C, Huegle J (2021) GPU-accelerated constraint-based causal structure learning for discrete data. In: SDM, S 37–45

    Google Scholar 

  15. Halfpap S, Schlosser R (2019) Workload-driven fragment allocation for partially replicated databases using linear programming. In: ICDE, S 1746–1749

    Google Scholar 

  16. Halfpap S, Schlosser R (2021) Memory-efficient database fragment allocation for robust load balancing when nodes fail. In: ICDE, S 1811–1816

    Google Scholar 

  17. Hellerstein JM et al (2019) Serverless computing: One step forward, two steps back. CIDR. Online Proceedings. www.cidrdb.org

  18. Huegle J (2021) An information-theoretic approach on causal structure learning for heterogeneous data characteristics of real-world scenarios. IJCAI. https://doi.org/10.24963/ijcai.2021/677

    Article  Google Scholar 

  19. Huegle J et al (2020) How causal structural knowledge adds decision-support in monitoring of automotive body shop assembly lines. IJCAI. https://doi.org/10.24963/ijcai.2020/758

    Article  Google Scholar 

  20. Huegle J et al (2021) MANM-CS: Data generation for benchmarking causal structure learning from mixed discrete-continuous and nonlinear data. In: WHY-21 at NeurIPS

    Google Scholar 

  21. Huegle J et al (2021) MPCSL - A modular pipeline for causal structure learning. In: SIGKDD, S 3068–3076

    Google Scholar 

  22. Kastius A, Schlosser R (2022) Dynamic pricing under competition using reinforcement learning. J Revenue Pricing Manag 21:50–63

    Google Scholar 

  23. Kemper A, Neumann T (2011) HyPer: A hybrid OLTP & OLAP main memory database system based on virtual memory snapshots. In: ICDE, S 195–206

    Google Scholar 

  24. Kossmann J et al (2020) Magic mirror in my hand, which is the best in the land? An experimental evaluation of index selection algorithms. Proceedings VLDB Endowment 13(11):2382–2395

    Google Scholar 

  25. Kossmann J et al (2022) Data dependencies for query optimization: A survey. Vldb J 31:1–22

    Google Scholar 

  26. Kossmann J et al (2022) SWIRL: Selection of workload-aware indexes using reinforcement learning. In: EDBT, S 155–168

    Google Scholar 

  27. Kossmann J et al (2022) Workload-driven, lazy discovery of data dependencies for query optimization. In: CIDR

    Google Scholar 

  28. Kossmann J, Schlosser R (2020) Self-driving database systems: A conceptual approach. Distrib Parallel Databases 38(4):795–817

    Google Scholar 

  29. Matthies C, Dobrigkeit F (2021) Experience vs data: A case for more data-informed retrospective activities. In: Lean and agile software development, S 130–144

    Google Scholar 

  30. Matthies C et al (2019) Attitudes, beliefs, and development data concerning agile software development practices. In: ICSE-SEET, S 158–169

    Google Scholar 

  31. Müller I et al (2020) Lambada: Interactive data analytics on cold data using serverless cloud infrastructure. In: SIGMOD, S 115–130

    Google Scholar 

  32. Plattner H (2013) A course in in-memory data management: The inner mechanics of in-memory databases

    Google Scholar 

  33. Plattner H (2014) The impact of columnar in-memory databases on enterprise systems. Proceedings VLDB Endowment 7(13):1722–1729

    Google Scholar 

  34. Plattner H, Leukert B (2015) The in-memory revolution: How SAP HANA enables business of the future

    Google Scholar 

  35. Raasveldt M, Mühleisen H (2019) DuckDB: an embeddable analytical database. SIGMOD. https://doi.org/10.1145/3299869.3320212

    Article  Google Scholar 

  36. Richly K et al (2021) Joint index, sorting, and compression optimization for memory-efficient spatio-temporal data management. In: ICDE, S 1901–1906

    Google Scholar 

  37. Schlosser R (2015) Dynamic pricing with time-dependent elasticities. J Revenue Pricing Manag 14(5):365–383

    Google Scholar 

  38. Schlosser R (2015) A stochastic dynamic pricing and advertising model under risk aversion. J Revenue Pricing Manag 14(6):451–468

    Google Scholar 

  39. Schlosser R (2016) Joint stochastic dynamic pricing and advertising with time-dependent demand. J Econ Dyn Control 73:439–452

    MathSciNet  MATH  Google Scholar 

  40. Schlosser R (2017) Stochastic dynamic pricing and advertising in isoelastic oligopoly models. Eur J Oper Res 259(3):1144–1155

    MathSciNet  MATH  Google Scholar 

  41. Schlosser R (2020) Risk-sensitive control of markov decision processes: A moment-based approach with target distributions. Comput Oper Res 123:104997

    MathSciNet  MATH  Google Scholar 

  42. Schlosser R, Boissier M (2018) Dynamic pricing under competition on online marketplaces: A data-driven approach, S 705–714

    Google Scholar 

  43. Schlosser R et al (2018) Data-driven inventory management and dynamic pricing competition on online marketplaces. In: IJCAI, S 5856–5858

    Google Scholar 

  44. Schlosser R et al (2019) Efficient scalable multi-attribute index selection using recursive strategies. In: ICDE, S 1238–1249

    Google Scholar 

  45. Schlosser R et al (2021) Circular economy: Joint dynamic pricing and recycling investments. Int J Prod Econ 236(108117):1–13

    Google Scholar 

  46. Schlosser R, Halfpap S (2020) A decomposition approach for risk-averse index selection. In: SSDBM, S 16:1–16:4

    Google Scholar 

  47. Schlosser R, Halfpap S (2021) Robust and memory-efficient database fragment allocation for large and uncertain database workloads. In: EDBT, S 367–372

    Google Scholar 

  48. Schlosser R, Richly K (2019) Dynamic pricing under competition with data-driven price anticipations and endogenous reference price effects. J Revenue Pricing Manag 18(6):451–464

    Google Scholar 

  49. Schmidt C et al (2018) Order-independent constraint-based causal structure learning for gaussian distribution models using GPUs. In: SSDBM, S 19:1–19:10

    Google Scholar 

  50. Teusner R et al (2015) Enhancing content between iterations of a MOOC - Effects on key metrics. EMOOCs 1(1):147–156

    Google Scholar 

Download references

Danksagung

Der EPIC wäre nichts ohne seine Doktorand:innen und PostDoc-Forscher:innen, da ihre Ergebnisse zur nächsten Generation von Datenbanken und Unternehmenssoftware beigetragen haben. Ebenso würdigen wir unsere enge Zusammenarbeit mit den anderen Forschungsgruppen am HPI, allen voran den Gruppen von Felix Naumann und Tilmann Rabl.

Wir bedanken uns bei unseren Industriepartner:innen. Zuerst einmal SAP für die Finanzierung und den ständigen Austausch von Ideen und Ergebnissen. Insbesondere unsere Kooperationen mit SAP HANA, „New Ventures and Technologies“ und dem gesamten Vorstandsbereich „Technology and Innovation“ helfen uns dabei Forschungsergebnisse in innovative Produkte zu überführen. Neben SAP arbeiten wir mit Seagate, Porsche, Heidelberger Druckmaschinen, Hilti, AWS, Zalando und vielen anderen zusammen. Vielen Dank, dass Sie uns herausfordernde Forschungsfragen bieten, an uns glauben und die Ergebnisse zurück in die Wirtschaft übertragen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Perscheid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perscheid, M., Plattner, H., Ritter, D. et al. Das Fachgebiet „Enterprise Platform and Integration Concepts“ am Hasso-Plattner-Institut. Datenbank Spektrum 22, 175–180 (2022). https://doi.org/10.1007/s13222-022-00412-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-022-00412-3

Schlüsselwörter

Navigation