Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this paper, we have assumed an inventory multi-objective optimization model under intuitionistic fuzziness. In modelling, we have considered the situations where triangular intuitionistic fuzzy numbers used to express some of the input information which associated with decision variables. Further, a ranking function approach by considering linear and the nonlinear degree of membership functions have been used to obtain the crisp form of the fuzzy parameters. Finally, the fuzzy goal programming approach has been used to solve the resultant model to obtain the optimal ordering quantity. Also, a comparative study of the formulated problem under intuitionistic fuzziness has been done with a deterministic model of inventory. The concept of the paper is explained through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33(1):37–45

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee S, Roy TK (2010) Solution of single and multiobjective stochastic inventory models with fuzzy cost components by intuitionistic fuzzy optimization technique. Adv Oper Res. https://doi.org/10.1155/2010/765278

    Article  MATH  Google Scholar 

  • Bera UK, Maiti MK, Maiti M (2012) Inventory model with fuzzy lead-time and dynamic demand over finite time horizon using a multi-objective genetic algorithm. Comput Math Appl 64(6):1822–1838

    Article  MathSciNet  MATH  Google Scholar 

  • Bhaya S, Pal M, Nayak PK (2014) Intuitionistic fuzzy optimization technique in EOQ model with two types of imperfect quality items. Adv Model Optim 16(1):33–50

    MATH  Google Scholar 

  • Chakraborty D, Jana DK, Roy TK (2014) A new approach to solve intuitionistic fuzzy optimization problem using possibility, necessity, and credibility measures. Int J Eng Math. https://doi.org/10.1155/2014/593185

    Article  MATH  Google Scholar 

  • Chakrabortty S, Pal M, Nayak PK (2013) Intuitionistic fuzzy optimization technique for Pareto optimal solution of manufacturing inventory models with shortages. Eur J Oper Res 228(2):381–387

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YF (2005) Fractional programming approach to two stochastic inventory problems. Eur J Oper Res 160(1):63–71

    Article  MathSciNet  MATH  Google Scholar 

  • Das B, Maiti M (2012) A volume flexible fuzzy production inventory model under interactive and simulation approach. Int J Math Oper Res 4(4):422–438

    Article  MathSciNet  MATH  Google Scholar 

  • De SK, Sana SS (2014) A multi-periods production-inventory model with capacity constraints for multi-manufacturers—a global optimality in intuitionistic fuzzy environment. Appl Math Comput 242(1):825–841

    MathSciNet  MATH  Google Scholar 

  • De SK, Goswami A, Sana SS (2014) An interpolating by pass to Pareto optimality in intuitionistic fuzzy technique for a EOQ model with time sensitive backlogging. Appl Math Comput 230(1):664–674

    MathSciNet  MATH  Google Scholar 

  • Du W, Leung SYS, Kwong CK (2015) A multi objective optimization-based neural network model for short-term replenishment forecasting in fashion industry. Neuro-computing 151(1):342–353

    Google Scholar 

  • Dutta D, Kumar P (2013) Application of fuzzy goal programming approach to multi-objective linear fractional inventory model. Int J Syst Sci 46(12):2269–2278

    Article  MathSciNet  MATH  Google Scholar 

  • Fattahi P, Hajipour V, Nobari A (2015) A bi-objective continuous review inventory control model: Pareto-based meta-heuristic algorithms. Appl Soft Comput 32:211–223

    Article  Google Scholar 

  • Fung RYK, Tang J, Wang D (2003) Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities. IEEE Trans Syst Man Cybern Part A Syst Hum 33(3):302–313

    Article  Google Scholar 

  • Garai A, Ghosh P, Roy TK (2015) Solution of inventory model by Geometric programming technique under intuitionistic fuzzy environment. Optimization 2(6):73–87

    Google Scholar 

  • Garai T, Chakraborty D, Roy TK (2018) A fuzzy rough multi-objective multi-item inventory model with both stock-dependent demand and holding cost rate. Granul Comput. https://doi.org/10.1007/s41066-018-0085-6

  • Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind Manag Optim 10(3):777–794

    Article  MathSciNet  MATH  Google Scholar 

  • Garg H (2015a) Fuzzy inventory models for deteriorating items under different types of lead-time distributions. In: Kahraman C, Onar SÇ (eds) Intelligent techniques in engineering management. Springer, Cham, pp 247–274

    Chapter  Google Scholar 

  • Garg H (2015b) A hybrid GA-GSA algorithm for optimizing the performance of an industrial system by utilizing uncertain data. In: Vasant P (ed) Handbook of research on artificial intelligence techniques and algorithms. IGI Global, Hershey, pp 620–654

    Chapter  Google Scholar 

  • Garg H (2016a) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274(1):292–305

    MathSciNet  MATH  Google Scholar 

  • Garg H (2016b) A new generalized improved score function of interval-valued in tuitionistic fuzzy sets and applications in expert systems. Appl Soft Comput 3(8):988–999

    Article  Google Scholar 

  • Garg H (2017) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Artif Intell 60(1):164–174

    Article  Google Scholar 

  • Garg H (2018) Analysis of an industrial system under uncertain environment by using different types of fuzzy numbers. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-018-0699-8

    Article  Google Scholar 

  • Garg H, Arora R (2017) A nonlinear-programming methodology for multi-attribute decision-making problem with interval-valued intuitionistic fuzzy soft sets information. Appl Intell. https://doi.org/10.1007/s10489-017-1035-8

    Article  Google Scholar 

  • Garg H, Rani M (2013) An approach for reliability analysis of industrial systems using PSO and IFS technique. ISA Trans 52(6):701–710

    Article  Google Scholar 

  • Garg H, Rani M, Sharma SP (2013) Reliability analysis of the engineering systems using intuitionistic fuzzy set theory. J Qual Reliab Eng 2013, Article ID 943972,10

  • Garg H, Rani M, Sharma SP, Vishwakarma Y (2014a) Bi-objective optimization of the reliability–redundancy allocation problem for series-parallel system. J Manuf Syst 33(3):335–347

    Article  Google Scholar 

  • Garg H, Rani M, Sharma SP, Vishwakarma Y (2014b) Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. Expert Syst Appl 41(1):3157–3167

    Article  Google Scholar 

  • Hariri AMA, Abou-El-Ata MO (1997) Multi-item production lot-size inventory model with varying order cost under a restriction: a geometric programming approach. Prod Plan Control Manag Oper 8(2):179–182

    Article  Google Scholar 

  • Harris FW (1913) How many parts to make at once. Oper Res 38(6):947–950

    Article  Google Scholar 

  • Khanra S, Sana SS, Chaudhuri K (2010) An EOQ model for perishable item with stock and price dependent demand rate. Int J Math Oper Res 2(3):320–335

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar P, Dutta D (2015) Multi-objective linear fractional inventory model of multi-products with price-dependant demand rate in fuzzy environment. Int J Math Oper Res 7(5):547–565

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu A, Chakrabarti T (2011) A production lot-size model with fuzzy-ramp type demand and fuzzy deterioration rate under permissible delay in payments. Int J Math Oper Res 3(5):524–540

    Article  MathSciNet  MATH  Google Scholar 

  • Mahapatra GS, Roy TK (2013) Intuitionistic fuzzy number and its arithmetic operation with application on system failure. J Uncertain Syst 7(2):92–107

    Google Scholar 

  • Mahata GC, Goswami A (2013) Fuzzy inventory models for items with imperfect quality and shortage back ordering under crisp and fuzzy decision variables. Comput Ind Eng 64(1):190–199

    Article  Google Scholar 

  • Min J, Zhou YW, Liu GQ, Wang SD (2012) An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments. Int J Syst Sci 43(6):1039–1053

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal M, Maity AK, Maiti MK, Maiti M (2013) A production-repairing inventory model with fuzzy-rough coefficients under inflation and time value of money. Appl Math Model 37(5):3200–3215

    Article  MathSciNet  MATH  Google Scholar 

  • Nagoorgani A, Ponnalagu K (2012) A new approach on solving intuitionistic fuzzy linear programming problem. Appl Math Sci 6(70):3467–3474

    MathSciNet  MATH  Google Scholar 

  • Pando V, Garcı J, San-José LA, Sicilia J (2012) Maximizing profits in an inventory model with both demand rate and holding cost per unit time dependent on the stock level. Comput Ind Eng 62(2):599–608

    Article  Google Scholar 

  • Pando V, San-José LA, García-Laguna J, Sicilia J (2013) An economic lot-size model with non-linear holding cost hinging on time and quantity. Int J Prod Econ 145(1):294–303

    Article  Google Scholar 

  • Pentico DW, Drake MJ (2011) A survey of deterministic models for the EOQ and EPQ with partial backordering. Eur J Oper Res 214(2):179–198

    Article  MathSciNet  Google Scholar 

  • Rafiei M, Mohammadi M, Torabi S (2013) Reliable multi period multi product supply chain design with facility disruption. Decis Sci Lett 2(2):81–94

    Article  Google Scholar 

  • Rani D, Gulati TR, Garg H (2016) Multi-objective non-linear programming problem in intuitionistic fuzzy environment: optimistic and pessimistic viewpoint. Exp Syst Appl 64:228–238. https://doi.org/10.1016/j.eswa.2016.07.034

    Article  Google Scholar 

  • Roy TS, Ghosh SK, Chaudhuri K (2013) An economic production quantity model for items with time proportional deterioration under permissible delayin payments. Int J Math Oper Res 5(3):301–316

    Article  MathSciNet  MATH  Google Scholar 

  • Sabri EH, Beamon BM (2000) A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega 28(1):581–598

    Article  Google Scholar 

  • Sadjadi SJ, Aryanezhad MB, Sarfaraj A (2005) A fuzzy approach to solve a multi-objective linear fractional inventory model. J Indus Eng Int 1(1):43–47

    Google Scholar 

  • Shah NH, Soni H (2011) A multi-objective production inventory model with backorder for fuzzy random demand under flexibility and reliability. J Math Model Algorithms 10(4):341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Singh S, Garg H (2017) Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell 46(4):788–799

    Article  Google Scholar 

  • Singh SK, Yadav SP (2016) Fuzzy programming approach for solving intuitionistic fuzzy linear fractional programming problem. Int J Fuzzy Syst 18(2):263–269

    Article  MathSciNet  Google Scholar 

  • Srivastav A, Agrawal S (2016) Multi-objective optimization of hybrid backorder inventory model. Expert Syst Appl 51(1):76–84

    Article  Google Scholar 

  • Taleizadeh AA, Wee HM, Jolai F (2013) Revisiting a fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Math Comput Model 57(6):1466–1479

    Article  MathSciNet  Google Scholar 

  • Tersine RJ (1994) Principles of inventory and materials management. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Tripathi R (2013) Inventory model with different demand rate and different holding cost. Int J Ind Eng Comput 4(3):437–446

    Google Scholar 

  • Valliathal M, Uthayakumar R (2010) An EOQ model for rebate value and selling-price-dependent demand rate with shortages. Int J Math Oper Res 3(1):99–123

    Article  MathSciNet  MATH  Google Scholar 

  • Wee HM, Lo CC, Hsu PH (2009) A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. Eur J Oper Res 197(2):620–631

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Liu Y (2013) An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers. Comput Ind Eng 66(2):311–324

    Article  Google Scholar 

  • Xu J, Zhao L (2008) A class of fuzzy rough expected value multi-objective decision making model and its application to inventory problems. Comput Math Appl 56(8):2107–2119

    Article  MathSciNet  MATH  Google Scholar 

  • Xu J, Zhao L (2010) A multi-objective decision-making model with fuzzy rough coefficients and its application to the inventory problem. Inf Sci 180(5):679–696

    Article  MathSciNet  MATH  Google Scholar 

  • Yadav D, Pundir S, Kumari R (2010) A fuzzy multi-item production model with reliability and flexibility under limited storage capacity with deterioration via geometric programming. Int J Math Oper Res 3(1):78–98

    Article  MathSciNet  MATH  Google Scholar 

  • Yang CT (2014) An inventory model with both stock-dependent demand rate and stock-dependent holding cost rate. Int J Prod Econ 155(1):214–221

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45–55

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Gupta, S. & Ahmed, A. Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment. Int J Syst Assur Eng Manag 10, 173–189 (2019). https://doi.org/10.1007/s13198-018-0738-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-018-0738-5

Keywords

Navigation