Abstract
In many practical situations, we need to reduce the cost of the system and improve its reliability simultaneously. At the same time, all the design data involved in the system design are not precisely known. Incompleteness and unreliability of input information are typical for many practical problems in the multi-objective optimization of system design. In this work, we have analyzed fuzzy multi-objective optimization problem of main characteristics of system design such as reliability and cost simultaneously based on non-dominated sorting genetic algorithm-II (NSGA-II). NSGA-II is one of the multi-objective evolutionary algorithms (MOEAs), provides the decision-maker with a complete picture of the Pareto-optimal solutions space. It finds increasing applications in solving the multi-objective optimization problem (MOOP) because of low computational requirements, elitism, and parameter-less sharing approach. A brief description of NSGA-II and its use for MOOP is given. We have obtained multiple solutions (Pareto-optimal solutions) in a single simulation run. A numerical example of a series system is given to illustrate the proposed approach.
Similar content being viewed by others
References
Aggarwal KK, Gupta JS (1975) On minimizing the cost of reliable systems. IEEE Trans Reliab 24(3):205
Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci 17:141–164
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Dhingra AK (1992) Optimal apportionment of reliability and redundancy in series systems under multiple objectives. IEEE Trans Reliab 41(4):576–582
Huang HZ (1997) Fuzzy multi-objective optimization decision-making of reliability of series system. Microelectron Reliab 37(3):447–449
Inagaki T, Inoue K, Akashi H (1978) Interactive optimization of system reliability under multiple objectives. IEEE Trans Reliab 27(4):264–267
Kishore A, Yadav SP, Kumar S (2009) A multi-objective genetic algorithm for reliability optimization problem. Int J Perform Eng 5(3):227–234
Knowles J, Corne D (1999) The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. In: Proceedings of the 1999 Congress on evolutionary computation. IEEE Press, Piscataway, pp 98–105. doi:10.1109/CEC.1999.781913
Kuo W (2007) Recent advances in optimal reliability allocation. IEEE Trans Syst Man Cybern Part A Syst Hum 37(2):143–156
Kuo W, Prasad VR, Tillman FA, Hwang CL (2001) Optimal reliability design. Cambridge University Press, Cambridge
Mahapatra GS, Roy TK (2006) Fuzzy multi-objective mathematical programming on reliability optimization model. Appl Math Comput 174:643–659
Park KS (1987) Fuzzy apportionment of system reliability. IEEE Trans Reliab 36:129–132
Ravi V, Reddy PJ, Zimmermann HJ (2000) Fuzzy global optimization of complex system reliability. IEEE Trans Fuzzy Syst 8(3):241–248
Sakawa M (1978) Multi-objective optimization by the surrogate worth trade-off method. IEEE Trans Reliab 27:311–314
Salazar D, Rocco CM, Galvan BJ (2006) Optimization of constrained multiple objective reliability problems using evolutionary algorithms. Reliab Eng Syst Saf 91:1057–1070
Sharifi M, Guilani PP, Shahriari M (2016) Using NSGA-II algorithm for a three objective redundancy allocation problem with k-out-of-n sub-systems. J Optim Ind Eng 19:87–95
Srinivas N, Deb K (1994) Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2(3):221–248
Vitorino RM, Jorge HM, Neves LP (2015) Multi-objective optimization using NSGA-II for power distribution system reconfiguration. Int Trans Electr Energy Syst 25:38–53
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zimmermann HJ (1991) Fuzzy set theory and applications, 2nd edn. Kluwer, Boston
Zitzler E, Thiele L (1998) An evolutionary algorithm for multi-objective optimization: the strength Pareto approach, Technical report 43. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich
Acknowledgement
The first author gratefully acknowledges the financial support given by the Ministry of Human Resource and Development (MHRD), Govt. of India.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, H., Yadav, S.P. NSGA-II based fuzzy multi-objective reliability analysis. Int J Syst Assur Eng Manag 8, 817–825 (2017). https://doi.org/10.1007/s13198-017-0672-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13198-017-0672-y