Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Evaluation of benchmarking attribute for service quality using multi attitude decision making approach

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The essence of benchmarking is the process of identifying the highest standards of superiority for products, services or processes and then make the essential improvements to reach those standards. Today, assessment of service is a main management concern for industries tends to convert benchmark in its respective field. In this study, an endeavor has been made by the authors to evaluate the performance of benchmark model in service industries by using Fuzzy MADM approach where linguistic labels are used to describe attributes of benchmarking which are identified through literature and experts opinion. Afterwards overall numerical index has been computed by using graph theoretic approach, which helps to compare different alternatives of benchmarking for industries’ existence. The results show that responsiveness and reliability is found best alternatives among all the alternatives and Tangibles system is considered as nastiest for the study. This study imposed managers to select significant attributes and alternatives for enhancement of industries at global level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal VP, Kohli V, Gupta S (1991) Computer aided robot selection: the multiple attribute decision making approach. Int J Prod Research 29(8):1629–1644

    Article  Google Scholar 

  • Anand G, Kodali R (2008) Selection of lean manufacturing systems using the PROMETHEE. J Model Manag 3(1):44–70

    Article  Google Scholar 

  • Arlbjorn JS, Freytag PV, de Haas H (2011) Service supply chain management: a survey of lean application in the municipal sector. Int J Phys Distrib Logist Manag 41(3):277–295

    Article  Google Scholar 

  • Attri R, Grover S (2014) A graph theoretic approach to evaluate the intensity of barriers in the implementation of total productive maintenance (TPM). Int J Prod Res 52:3032–3051

    Article  Google Scholar 

  • Benıtez JM et al (2007) Using fuzzy number for measuring quality of service in the hotel industry. Tourism Manag 28:544–555

    Article  Google Scholar 

  • Boonitt S, Pongpanarat C (2011) Measuring service supply chain management processes: the application of the Q-sort technique. Int J Innovation, Mgmt Tech 2(3):217

    Google Scholar 

  • Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision making methods. Springer Berlin Heidelberg pp 289-486

  • Chien C-J, Tsai H (2000) Using fuzzy numbers to evaluate perceived service quality. Fuzzy Sets Syst 116:289–300

    Article  MATH  Google Scholar 

  • Dou J, Dai X, Meng Z (2009) Graph theory based approach to optimize single-product flow-line configurations of RMS. Int J Adv Manuf Technol 41(9/10):916–931

    Article  Google Scholar 

  • Gandhi OP, Agrawal VP (1996) Failure cause analysis a structural approach. J Press Vessel Tech 18(4):434–440

    Article  Google Scholar 

  • Giannakis M (2008) Facilitating learning and knowledge transfer through supplier development. Supply Chain Manag Int J 13(1):62–72

    Article  Google Scholar 

  • Gowan M et al (2001) Service quality in a public agency:same expectations but different perceptions by employees, managers and customers. J Qual Manag 6:275–291

    Article  Google Scholar 

  • Goyal S, Grover S (2013a) A fuzzy multi attribute decision making approach for evaluating effectiveness of advanced manufacturing technology—in Indian context. Int J Prod Qual Manag 11(2):150–178

    Google Scholar 

  • Goyal S, Grover S (2013b) Manufacturing system’s effectiveness measurement by using combined approach of ANP and GTMA. Inter J Sys Assur Eng Manag 4(4):404–423

    Article  Google Scholar 

  • Grover S, Agrawal VP, Khan IA (2004) A digraph approach to TQM evaluation of an industry. Int J Prod Res 42(19):4031–4053

    Article  MATH  Google Scholar 

  • Grover S, Agrawal VP, Khan IA (2006) Role of human factors in TQM: a graph theoretic Approach. Int J Benchmarking 13(4):447–468

    Article  Google Scholar 

  • Gupta V, Singh S (2014) Psychological capital as a mediator of the relationship between leadership and creative performance behaviors: empirical evidence from the Indian R&D sector. Int J Human Res Manag 25(10):1373–1394

    Google Scholar 

  • Horvath P, Herter NR (1992) Benchmarking: comparison with the best of the best. Control 4(1):4–11

    Google Scholar 

  • Huang Z, Yip-Hoi D, Zhou J (2003) A graph-based approach for capturing the capability envelope of a machining process. J manuf sci eng 125(2):272–288

    Article  Google Scholar 

  • Jangra K, Grover S, Agarwal A (2010) Digraph and matrix method for the performance evaluation of carbide compacting die manufactured by wire EDM. Int J Adv Manuf Technol 54(5–8):579–591

    Google Scholar 

  • Kang GD, James J (2004) Service quality dimensions: an examination of Grönroos's service quality model. Manag Serv Qual: Int J 14(4):266–277

    Article  Google Scholar 

  • Kodali R, Prasad Mishra R, Anand G (2009) Justification of world-class maintenance systems using analytic hierarchy constant sum method. J Qual Maint Eng 15(1):47–77

    Article  Google Scholar 

  • Kulkarni S (2005) Graph theory and matrix approach for performance evaluation of TQM in Indian industries. Int J TQM Indian Ind 17(6):509–526

    Google Scholar 

  • Kumar R, Garg D, Garg TK (2011) TQM success factors in North Indian manufacturing and service industries. TQM J 23(1):36–46

    Article  Google Scholar 

  • Li H, Liu Y, Suomi R (2009) Measurement of e-service quality: an empirical study on online travel service. In: 17th European Conference on Information system, Research Paper, pp 1–13

  • Lin H-T (2010) Fuzzy application in service quality analysis: an empirical study. Expert Syst Appl 37:517–526

    Article  Google Scholar 

  • Liou T-S, Chen C-W (2006) Subjective appraisal of service quality using fuzzy linguistic Assessment. Int J Qual Reliab Manag 23:928–943

    Article  Google Scholar 

  • Malhotra MK, Grover V (1998) An assessment of survey research in POM: from constructs to theory. J Oper Manag 16(4):407–425

    Article  Google Scholar 

  • Narayan B, Rajendran C, Sai LP (2008) Scales to measure and benchmark service quality in tourism industry: a second-order factor approach. Benchmarking Int J 15(4):469–493

    Article  Google Scholar 

  • Padma P et al (2009) A conceptual framework of service quality in healthcare perspectives of Indian patients and their attendants. Benchmarking Int J 16(2):157–191

    Article  Google Scholar 

  • Parasuraman A et al (1988) SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. J Retail 64(1):12–40

    Google Scholar 

  • Perego A, Rangonen A (1998) A reference framework for the application of MADM fuzzy techniques for selecting AMTS. Int J Prod Res 36(2):437–458

    Article  MATH  Google Scholar 

  • Rao RV, Gandhi OP (2002) Digraph and matrix methods for the machinability evaluation of work materials. Int J Mach Tools Manuf 42(3):321–330

    Article  Google Scholar 

  • Rao V, Padmanabhan KK (2006) Selection, identification and comparison of industrial robots using digraph and matrix methods. Int J Robot Comput Integr Manuf 22(4):373–383

    Article  Google Scholar 

  • Ravi S, Fisher W (2002) Modelling and evaluating service quality measurement using neural networks.  Int J oper production Manag 22(10):1162–1185

    Article  Google Scholar 

  • Rezazadeh A., Najafi S, Hatami-Shirkouhi, L, Miri-Nargesi S (2012) Evaluating and prioritising critical success factors of TQM implementation based on fuzzy AHP. Int J Prod Qual Manag 9(1):1–24

    Google Scholar 

  • Saha R, Grover S (2011) Critical factors of website performance: a graph theoretic approach. Int J Web Sci 1(1/2):54–98

    Article  Google Scholar 

  • Saunders M, Mann R, Smith R (2007) Benchmarking strategy deployment practices. Benchmarking: Int J 14(5):609–623

    Article  Google Scholar 

  • Shipley MF, Coy SP (2008) A fuzzy logic model for competitive assessment of airline service quality. Int J Product Qual Manag 4(1):84–102

    Article  Google Scholar 

  • Sila I, Ebrahimpour M (2003) Examination and comparison of the critical factors of total quality management (TQM) across countries. Int J Prod Res 41(2):235–268

    Article  MATH  Google Scholar 

  • Singh B, Grover S, Singh V (2015a) An overview of Benchmarking process the continuous improvement tool. Int. J. YMCAUST 1(2):70–75

    Google Scholar 

  • Singh B, Grover S, Singh V (2015b) A Benchmark model for internal assessment of Industry using Fuzzy Topsis approach. Int J Recent Adv Mech Eng 4(1):93–105

    Article  Google Scholar 

  • Singh B, Grover S, Singh V (2015c) An analytic hierarchy process for benchmarking of automobile car service industry in Indian context. Manag Sci Lett 5(6):543–554

    Article  Google Scholar 

  • Singh B, Grover S, Singh V (2015d) Weighted ISM approach to interface amongst the barriers of benchmarking in Indian service industries. Int J Adv Oper Manag 7(4):317–340

    Google Scholar 

  • Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol sci 14(1):1232–1277

    Article  Google Scholar 

  • Small MH, Chen IJ (1995) Investment justification of advanced manufacturing technology: an empirical analysis. J Eng Tech Manag 12(1):27–55

    Article  Google Scholar 

  • Smith AM (2000) Using consumer benchmarking criteria to improve service sector competitiveness. Benchmarking Int J 7(5):373–388

    Article  Google Scholar 

  • Spendolini (1992) The benchmarking process. Compen Benefits Rev 24(5):21–29

    Article  Google Scholar 

  • Tsai JL (2008) Efficient multi-server authentication scheme based on one-way hash function without verification table. Comput Secur 27(3):115–121

    Article  Google Scholar 

  • Tzeng YF, Chen FC (2007) Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. Mater design 28(4):1159–1168

    Article  Google Scholar 

  • Uysal F, Tosun Ö (2012) Fuzzy TOPSIS-based computerized maintenance management system selection. J Manuf Tech Manag 23(2):212–228

    Article  Google Scholar 

  • Wani MF, Gandhi OP (1999) Development of maintainability index for mechanical systems. Reliab Eng Syst Saf 65(3):259–270

    Article  Google Scholar 

  • Wong PW, Wong KY (2008) A review on benchmarking of supply chain performance measures. Bench Int J 15(1):25–51

    Article  Google Scholar 

  • Yu VF, Hu KJ (2010) An integrated fuzzy multi-criteria approach for the performance evaluation of multiple manufacturing plants. Comp Indus Eng 58:269–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupender Singh.

Appendix

Appendix

$$\begin{aligned} {\text{Per}}\left( {\text{A}} \right) & = \prod\limits_{1}^{12} {V_{i} } \\ & \quad + \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji} )} .D_{k} .D_{i} .D_{m} .D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} \, \\ & \quad + \,\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{ki} )} \,.D_{l.} D_{m} .D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} \\ & \quad + \,\left\{ \begin{aligned} \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{kl} .D_{li} ).D_{m} .D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \,\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji} ).(D_{kl} .D_{lk} ).D_{m} .D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \, \hfill \\ \end{aligned} \right\} \\ & \quad + \left\{ \begin{aligned} \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{ki} )\,(D_{lm} .D_{ml} )} \,D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} \hfill \\ + \,\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{kl} .D_{lm} .D_{mi)} .D_{n} .D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ \end{aligned} \right\} \\ & \quad + \left\{ \begin{aligned} \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji} )\,(D_{kl} .D_{lk} ).(D_{mn} .D_{nm} ).D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \,\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji} ).(D_{kl} .D_{lm} .D_{mn} .D_{nk} ).D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \,\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{ki} )(D_{lm} .D_{mn} .D_{nl} ).D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{kl} .D_{lm} .D_{mn} .D_{ni} ).D_{p} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ \end{aligned} \right\} \\ & \quad + \left\{ \begin{aligned} \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji} ).(D_{kl} .D_{lk} ).(D_{mn} .D_{np} .D_{pm} )} .D_{q} .D_{r} .D_{s} .D_{t} .D_{u} \hfill \\ + \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{ji)} .(D_{kl} .D_{lm} .D_{mn} .D_{np} .D_{pk} ).D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{ki} )(D_{lm} .D_{mn} .D_{np} .D_{pl} ).D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ + \sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{kl} .D_{lm} .D_{mn} .D_{np} .D_{pi} ).D_{q} .D_{r} .D_{s} .D_{t} .D_{u} } \hfill \\ \end{aligned} \right\} \\ & \quad + \,{\text{up}}\,{\text{to}}\, 2 1 {\text{st}}\,{\text{subgrouping}}\,{\text{of13th}}\,{\text{grouping}}\,{\text{i}} . {\text{e}} .\\ & \quad { + }\sum\limits_{i}^{{}} {} \sum\limits_{j} {} \sum\limits_{k} {} \sum\limits_{l} {} \sum\limits_{m} {} \sum\limits_{n} {} \sum\limits_{p} {} \sum\limits_{q} {} \sum\limits_{r} {} \sum\limits_{s} {} \sum\limits_{t} {} \sum\limits_{u} {(D_{ij} .D_{jk} .D_{kl} .D_{lm} .D_{mn} .D_{np} .D_{pq} .D_{qr} .D_{rs} .D_{tu} .D_{ui} } \\ {\text{all}}\,{\text{random}}\,{\text{counts}}\,{\text{i,}}\,{\text{j,}}\,{\text{k,}}\,{\text{l,}}\,{\text{m,}}\,{\text{n,}}\,{\text{p,}}\,{\text{q,}}\,{\text{r,}}\,{\text{s,}}\,{\text{t,}}\,{\text{u}}\,{\text{are}}\,{\text{integers}} \\ \end{aligned}$$

The Eq. (2) gives permanent function for the evaluation. Here the terms are arranged in (12 + 1) groupings. These groupings give the measure of all the attributes and the relative importance between them. The first term (grouping) represents a set of twelve independent subsystem characteristics as D1, D2, D3,…. D12. As system has no ‘self-loop’, so second term or grouping is missing.

Each term of the third grouping represents a set of two elements attribute loops (i.e. Dij.Dji) and is the resultant dependence of attribute i and j and the evaluation measure of N-2 connected terms. Each term of the fourth grouping represents a set of three elements attribute loops (Dij.Djk.Dki or its pair Dik.Dkj.Dji) and the evaluation measure of N-3 unconnected elements or attributes within the system. The fifth grouping contains two subgroups. The terms of first subgrouping consists of four element attribute loops (i.e. Dij.Djk.Dkl.Dli) and the subsystem evaluation index component (Dm.Dn…… Du). The terms of the second grouping are the product of two elements attributes loops (Dij.Dji) (Dkl.Dlk)) and the subsystem evaluation index component (Dm.Dn…… Du).

The terms of the sixth grouping are arranged in two subgroupings. The terms of the first subgroupings are of five element attribute loop (i.e. Dij.Djk.Dkl.Dlm.Dmi) or its pair (Dim.Dml.Dlk.Dkj.Dji) and the subsystem evaluation index component (Dn.Dp…… Du). The second subgrouping consists of a product of two attributes loops (i.e. Dij.Dji) and a three attribute loop (i.e. Dkl.Dlm.Dmk) or its pair (i.e. Dkm.Dml.Dlk) and the subsystem evaluation index component (Dn.Dp…… Du). The terms of seventh groupings are arranged in four subgroupings. The first subgrouping of the seventh grouping is a set of 3- two element attribute loops (i.e. Dij.Dji, Dkl.Dlk, Dmn.Dnm) and the subsystem evaluation index component (Dp.Dq…… Du). The terms of second subgrouping of seventh grouping are of two element attribute loop (i.e. Dij.Dji) and four element attribute loop (i.e. Dkl.Dlm.Dmn.Dnk) with the subsystem evaluation index component (Dp.Dq…… Du). The terms of the third subgrouping of the seventh grouping are of 2- three element attribute loops (i.e. Dij.Dji.Dki and Dlm.Dmn.Dnl) with the subsystem evaluation index component (Dp.Dq…… Du). The terms of fourth subgrouping of seventh grouping are of six elemental attribute loop(i.e. Dij.Djk.Dkl.Dlm.Dmn.Dni) and one subsystem evaluation index component (Dp.Dq…… Du).

The terms of eighth grouping are arranged in four subgroupings. The first subgrouping of the eighth grouping is a set of three element attribute loop (i.e. Dmn.Dnp.Dpm), two element structured as (Dij.Dji) and (Dkl.Dlk) and the subsystem evaluation index component (Dq.Dr… Du). The second subgrouping is a set of a two element diad (Dij.Dji), a five element attribute loop (i.e. Dkl.Dlm.Dmn.Dnp.Dpk) and the subsystem evaluation index component (Dq.Dr… Du). The third subgrouping consists of a three element attribute loop (i.e. Dij.Djk.Dki), a four element attribute loop (i.e. Dlm.Dmn.Dnp.Dpl) and the subsystem evaluation index component (Dq.Dr… Du). Similarly, the fourth subgrouping of the eighth grouping is a seven elemental attribute loop (i.e. Dij.Djk.Dkl.Dlm.Dmn.Dnp.Dpi) and the subsystem evaluation index component (Dq.Dr… Du).

Similarly, other terms of the expression are defined up to the thirteenths grouping. Each term of the grouping as well as the subgroupings have their own independent identities which are useful for the designers and the development analysts for one-to-one evaluation of Advanced Manufacturing Technology.

$$\left[ \begin{aligned} \left( {J_{1}^{T} /J_{2}^{T} /J_{3}^{T} /J_{4}^{T} /J_{51}^{T} /J_{52}^{T} /J_{61}^{T} /J_{62}^{T} /J_{71}^{T} /J_{72}^{T} /J_{73}^{T} /J_{74}^{T} /J_{81}^{T} /J_{82}^{T} /J_{83}^{T} /J_{84}^{T} / \cdots J_{13,18}^{T} /J_{13,19}^{T} /J_{13,20}^{T} /J_{13,21}^{T} } \right) \hfill \\ \times \left( {V_{1}^{T} /V_{2}^{T} /V_{3}^{T} /V_{4}^{T} /V_{51}^{T} /V_{52}^{T} /V_{61}^{T} /V_{62}^{T} /V_{71}^{T} /V_{72}^{T} /V_{73}^{T} /V_{74}^{T} /V_{81}^{T} /V_{82}^{T} /V_{83}^{T} /V_{84}^{T} / \cdots V_{13,18}^{T} /V_{13,19}^{T} /V_{13,20}^{T} /V_{13,21}^{T} } \right) \hfill \\ \end{aligned} \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Grover, S. & Singh, V. Evaluation of benchmarking attribute for service quality using multi attitude decision making approach. Int J Syst Assur Eng Manag 8 (Suppl 2), 617–630 (2017). https://doi.org/10.1007/s13198-016-0485-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0485-4

Keywords

Navigation