Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Technical efficiency and productivity growth in public sector hospitals of Uttarakhand (India)

  • Original Paper
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This paper measures technical efficiency (TE) and total factor productivity (TFP) of 27 government hospitals of Uttarakhand (India) through data envelopment analysis based Malmquist Productivity Index for the period from 2001 to 2011. Technical efficiency change (TECh) and technical change (TECHCh) for each hospital are also estimated to identify sources of TFP growth. The results show that on average, TFP in the hospitals increased by a rate of 4.9 % per annum, with slightly higher growth observed in TE (2.6 %) than in technology (2.2 %). The study also reveals that TFP growth varies across regions and areas. On average, it has grown slightly faster in Garhwal region than Kumaon region. Further, it is observed relatively higher in the hospitals of plain/semi-plain areas than that of hill areas. It is observed that in some hospitals, TECh and TECHCh indices did not move in the same direction and therefore positive impact of one component on the TFP growth was largely cancelled by the negative impact of the other. The paper suggests that TFP in the public hospitals could be improved by reallocating the staff from inefficient hospitals to efficient ones; improving human capital base of inefficient hospitals; and investing in new medical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CHC:

Community Health Center

CRS:

Constant returns to scale

DMUs:

Decision making units

DRS:

Decreasing returns to scale

DEA:

Data envelopment analysis

GAA:

Growth accounting approach

IPD:

In Patient Department

MPI:

Malmquist Productivity Index

NRHM:

National Rural Health Mission

OPD:

Out Patient Department

PHC:

Primary health center

PFP:

Partial factor productivity

PTE:

Pure technical efficiency

PMS:

Paramedical staff

PTECh:

Pure technical efficiency change

SE:

Scale efficiency

SECh:

Scale efficiency change

SFA:

Stochastic frontier approach

TE:

Technical efficiency

TECh:

Technical efficiency change

TECHCh:

Technical change

TFPCh:

Total factor productivity change

TFP:

Total factor productivity

VRS:

Variable returns to scale

References

  • Agarwal S, Yadav SP, Singh SP (2007) DEA technique based assessment of efficiencies of the government hospitals of Uttaranchal (India). Int J Econ Res 4(1):25–42

    Google Scholar 

  • Barros CP, Menezes AG, Peypoch N, Solonandrasana B, Vieira JV (2007) An analysis of hospital efficiency and productivity growth using the Luenberger indicator. Health Care Manag Sci 11(4):373–381

    Article  Google Scholar 

  • Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output and productivity. Econometric 50(6):1393–1414

    Article  MATH  Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(10):429–441

    Article  MATH  MathSciNet  Google Scholar 

  • Coelli T (1996) A Guide to DEAP Version 2.1: a data envelopment analysis (computer) program. http://www.owlnet.rice.edu/~econ380/DEAP.PDF

  • Coelli T, Rao DSP, Battese GE (1998) An Introduction to efficiency and productivity analysis. Kluwer Academic Publisher, London

    Book  MATH  Google Scholar 

  • Dash U (2009) Evaluating the comparative performance of District Head Quarters Hospitals, 2002–07: a non-parametric Malmquist approach Mumbai: Indra Gandhi Institute of Development Research (IGIDR); IGIDR Proceedings/Project Reports Series pp 062–26

  • Dimas G, Goula A, Soulis S (2010) Productive performance and its components in Greek public hospitals. Int J Oper Res 12(1):15–27

    Article  Google Scholar 

  • Economic Survey 2011–12, Government of India. http://indiabudget.nic.in/index.asp

  • Fare R, Grosskopf S, Lindgren B, Ross P (1992) Productivity change in Swedish Pharmacies 1980–1989: a nonparametric Malmquist approach. J Prod Anal 3(1/2):85–102

    Article  Google Scholar 

  • Fare R, Grosskopf S, Lovell CAK (1994) Production frontiers. Cambridge University Press, Cambridge

    Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc Ser A Gen 120(3):253–281

    Article  Google Scholar 

  • Ferrier GD, Valdmanis VG (2008) Efficiency and productivity changes in large urban hospitals 1994–2002: ownership, markets, and the uninsured. Adv Health Econ Health Serv Res 18(3):158–176

    Google Scholar 

  • Gannon B (2008) Total factor productivity growth of hospitals in Ireland: a nonparametric approach. Appl Econ Lett 15(2):131–135

    Article  Google Scholar 

  • http://updateox.com/india/district-wise-population-india-as-of-2011-census/

  • Karagiannis R, Velentzas K (2010) Productivity and quality changes in Greek public hospitals. Int J Oper Res 12(1):69–81

    Article  Google Scholar 

  • Kirigia JM, Asbu EZ (2013) Technical and scale efficiency of public community hospitals in Eritrea: an exploratory study. Health Econ Rev 3(6):1–16

    Google Scholar 

  • Kirigia JM, Emrouznejad A, Cassoma B, Asbu EZ, Barry S (2008) A performance assessment method for hospitals: the case of municipal hospitals in Angola. J Med Syst 32(6):509–519

    Article  Google Scholar 

  • Mahadeven R (2002) A DEA Approach to Understanding the Productivity Growth of Malaysia’s Manufacturing Industries. Asia Pac J Manag 19:587–600

    Article  Google Scholar 

  • Malmquist S (1953) Index numbers and indifferences surfaces. Trabajos de Estatistica 4(2):209–242

    Article  MATH  MathSciNet  Google Scholar 

  • Mawson P, Carlaw KI, McLellan N, (2003) Productivity measurement: alternative approaches and estimates, New Zealand Treasury, Working Paper No. 3/12. http://www.treasury.govt.nz. Accessed on Nov 18, 2013

  • Mogha SK, Yadav SP, Singh SP (2014) Estimating technical and scale efficiencies of private hospitals using a non-parametric approach: case of India. Int J Oper Res 20(1):21–40

    Article  Google Scholar 

  • Ng YC (2008) The productive efficiency of the health care sector of China. Rev Reg Stud 38(3):381–393

    Google Scholar 

  • Pham LT (2011) Efficiency and productivity of hospitals in Vietnam. J Health Organ Manag 25(2):195–213

    Article  Google Scholar 

  • Sheikhzadeh Y, Roudsari AV, Vahidi RG, Emrouznejad A, Dastgiri S (2012) Public and private hospital services reform using data envelopment analysis to measure technical, scale, allocative and cost efficiencies. Health Promot Perspect 2(1):28–41

    Google Scholar 

  • Tlotlego N, Nonvignon J, Sambo LG, Asbu EZ, Kirigia JM (2010) Assessment of productivity of hospitals in Botswana: a DEA application. Int Arch Med 3(27):1–14

    Google Scholar 

  • Zere E, McIntyre D, Addison T (2001) Technical efficiency and productivity of public sector hospitals in three South African provinces. South Afr J Econ 69(2):336–358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Mogha.

Appendices

Appendix 1: Distance functions used to calculate MPIs

$$ \begin{gathered} \left. \begin{gathered} \left[ {D^{t} (X^{t} ,Y^{t} )} \right]^{ - 1} = \mathop {\text{Max}}\limits_{\phi ,\lambda } \phi \hfill \\ s.t.,\;\phi \;y_{r}^{t} - \sum\limits_{j = 1}^{n} {\lambda_{j}^{t} y_{rj}^{t} } \le 0,\quad \forall r = 1, \ldots ,s \hfill \\ \sum\limits_{j = 1}^{n} {\lambda_{j}^{t} x_{ij}^{t} } \le x_{i}^{t} \quad \forall i = 1, \ldots ,m \hfill \\ \lambda_{j}^{t} \ge 0\quad \forall j = 1, \ldots ,n \hfill \\ \end{gathered} \right\} \hfill \\ \phi \;{\text{is}}\;{\text{unrestricted}}\;{\text{in}}\;{\text{sign}} \hfill \\ \end{gathered} $$
(4)
$$ \begin{gathered} \left. \begin{gathered} \left[ {D^{t + 1} (X^{t + 1} ,Y^{t + 1} )} \right]^{ - 1} = \mathop {\text{Max}}\limits_{\phi ,\lambda } \phi \hfill \\ s.t.,\quad \phi \;y_{r}^{t + 1} - \sum\limits_{j = 1}^{n} {\lambda_{j}^{t + 1} y_{rj}^{t + 1} } \le 0,\quad \forall r = 1, \ldots ,s \hfill \\ \sum\limits_{j = 1}^{n} {\lambda_{j}^{t + 1} x_{ij}^{t + 1} } \le x_{i}^{t + 1} \quad \forall i = 1, \ldots ,m \hfill \\ \lambda_{j}^{t + 1} \ge 0\quad \forall j = 1, \ldots ,n \hfill \\ \end{gathered} \right\} \hfill \\ \phi \;{\text{is}}\;{\text{unrestricted}}\;{\text{in}}\;{\text{sign}} \hfill \\ \end{gathered} $$
(5)
$$ \begin{gathered} \left. \begin{gathered} \left[ {D^{t} (X^{t + 1} ,Y^{t + 1} )} \right]^{ - 1} = \mathop {\text{Max}}\limits_{\phi ,\lambda } \phi \hfill \\ s.t.,\phi y_{r}^{t + 1} - \sum\limits_{j = 1}^{n} {\lambda_{j}^{t} y_{rj}^{t} } \le 0,\quad \forall r = 1, \ldots ,s \hfill \\ \sum\limits_{j = 1}^{n} {\lambda_{j}^{t} x_{ij}^{t} } \le x_{i}^{t + 1} \quad \forall i = 1, \ldots ,m \hfill \\ \lambda_{j}^{t} \ge 0\quad \forall j = 1, \ldots ,n \hfill \\ \end{gathered} \right\} \hfill \\ \phi \;{\text{is}}\;{\text{unrestricted}}\;{\text{in}}\;{\text{sign}} \hfill \\ \end{gathered} $$
(6)
$$ \begin{gathered} \left. \begin{gathered} \left[ {D^{t + 1} (X^{t} ,Y^{t} )} \right]^{ - 1} = \mathop {\text{Max}}\limits_{\phi ,\lambda } \phi \hfill \\ s.t.,\phi y_{r}^{t} - \sum\limits_{j = 1}^{n} {\lambda_{j}^{t + 1} y_{rj}^{t + 1} } \le 0,\quad \forall r = 1, \ldots ,s \hfill \\ \sum\limits_{j = 1}^{n} {\lambda_{j}^{t + 1} x_{ij}^{t + 1} } \le x_{i}^{t} ,\quad \forall i = 1, \ldots ,m \hfill \\ \lambda_{j}^{t + 1} \ge 0\quad \forall j = 1, \ldots ,n \hfill \\ \end{gathered} \right\} \hfill \\ \phi \;{\text{is}}\;{\text{unrestricted}}\;{\text{in}}\;{\text{sign}} \hfill \\ \end{gathered} $$
(7)

Appendix 2

See Table 8.

Table 8 Descriptive statistics of input and output variables for the entire period (2001–2011)

Appendix 3

See Table 9.

Table 9 Full name of selected hospitals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogha, S.K., Yadav, S.P. & Singh, S.P. Technical efficiency and productivity growth in public sector hospitals of Uttarakhand (India). Int J Syst Assur Eng Manag 6, 390–406 (2015). https://doi.org/10.1007/s13198-014-0270-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-014-0270-1

Keywords

Navigation