Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Clustering mixed type data: a space structure-based approach

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Clustering mixed type data is important for the areas such as knowledge discovery and machine learning. Although many clustering algorithms have been developed for mixed type data, clustering mixed type data is still a challenging task. The challenges mainly come from the fact that the numerical attributes and categorical attributes of mixed type data are not in the same space. Most of the mixed data clustering methods handle the two types of attributes separately. The gap between the numerical attributes and categorical attributes is not handled very well. To handle the above issues, we expand the space structure representation scheme for categorical data to mixed type data. In the new scheme, all the attributes of the mixed type data are expressed as the numerical type, which is in a Euclidean space. In addition, we propose an accelerated approximate space structure based on the Nyström method, which reduces the time cost and memory cost of constructing a space structure. We then propose general frameworks based on the space structure data (SBM) and accelerated approximate space structure (Ap-SBM) for mixed type data clustering. Experimental analyses reflect the ability of the space structure to express the original mixed type data and the ability of the accelerated approximate space structure to express the space structure. The experimental results on thirteen mixed type data sets from UCI show superiority of the proposed frameworks compared with the other six representative mixed type data clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  2. Vegapons S, Ruizshulcloper J (2011) A survey of clustering ensemble algorithms. Int J Pattern Recognit Artif Intell 25(03):337–372

    Article  MathSciNet  Google Scholar 

  3. Li F, Qian Y, Wang J, Dang C, Liu B (2018) Cluster’s quality evaluation and selective clustering ensemble. ACM Trans Knowl Discov Data 12(5):60

    Article  Google Scholar 

  4. Li F, Qian Y, Wang J, Liang J (2017) Multigranulation information fusion: a dempster-shafer evidence theory-based clustering ensemble method. Inf Sci 378:389–409

    Article  MATH  Google Scholar 

  5. Macqueen J (1965) Some methods for classification and analysis of multivariate observations. In: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297

  6. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  MATH  Google Scholar 

  7. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  8. Aggarwal CC, Procopiuc CM, Yu PS (2002) Finding localized associations in market basket data. IEEE Trans Knowl Data Eng 14(1):51–62

    Article  Google Scholar 

  9. Chen H, Chuang K, Chen M (2008) On data labeling for clustering categorical data. IEEE Trans Knowl Data Eng 20(11):1458–1472

    Article  Google Scholar 

  10. Huang Z (1997) A fast clustering algorithm to cluster very large categorical data sets in data mining. Research Issues on Data Mining and Knowledge Discovery 1–8

  11. Qian Y, Liang J, Pedrycz W, Dang C (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9):597–618

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai L, Liang J, Dang C, Cao F (2013) The impact of cluster representatives on the convergence of the k-modes type clustering. IEEE Trans Pattern Anal Mach Intell 35(6):1509–1522

    Article  Google Scholar 

  13. Hunt L, Jorgensen M (2011) Clustering mixed data. Wiley Interdisciplinary Rev Data Mining Knowledge Discovery 1(4):352–361

    Article  Google Scholar 

  14. Blomstedt P, Tang J, Xiong J, Granlund C, Corander J (2015) A bayesian predictive model for clustering data of mixed discrete and continuous type. IEEE Trans Pattern Anal Mach Intell 37(3):489–498

    Article  Google Scholar 

  15. Lam D, Wei M, Wunsch D (2017) Clustering data of mixed categorical and numerical type with unsupervised feature learning. IEEE Access 3(2):1605–1613

    Google Scholar 

  16. Ni X, Quadrianto N, Wang Y, Chen C (2017) Composing tree graphical models with persistent homology features for clustering mixed-type data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2622–2631

  17. Jeris C, Jeris C, Jeris C, Jeris C, Jeris C (2001) A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–268

  18. Hsu C, Chen C, Su Y (2007) Hierarchical clustering of mixed data based on distance hierarchy. Inf Sci 177(20):4474–4492

    Article  Google Scholar 

  19. Li C, Biswas G (2002) Unsupervised learning with mixed numeric and nominal data. IEEE Trans Knowl Data Eng 4:673–690

    Article  Google Scholar 

  20. Hsu C, Huang W (2016) Integrated dimensionality reduction technique for mixed-type data involving categorical values. Appl Soft Comput 43:199–209

    Article  Google Scholar 

  21. Manuela H, Dominic E, Annette K-S (2017) Clustering of samples and variables with mixed-type data. PLoS ONE 12(11):0188274

    Google Scholar 

  22. Chen J, He H (2016) A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data. Inf Sci 345(C):271–293

    Article  Google Scholar 

  23. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  24. Mao J, Jain AK (1996) A self-organizing network for hyperellipsoidal clustering. IEEE Trans Neural Networks 7(1):16

    Article  Google Scholar 

  25. Jarvis RA, Patrick EA (2006) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C–22(11):1025–1034

    Article  Google Scholar 

  26. Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396–410

    Article  Google Scholar 

  27. Wang P, Yao Y (2018) Ce3: a three-way clustering method based on mathematical morphology. Knowl-Based Syst 155:54–65

    Article  Google Scholar 

  28. Wang P, Shi H, Yang X, Mi J (2019) Three-way k-means: integrating k-means and three-way decision. Int J Mach Learn Cybern 10:2767–2777

    Article  Google Scholar 

  29. Qian Y, Li F, Liang J, Liu B, Dang C (2016) Space structure and clustering of categorical data. IEEE Transact Neural Networks Learn Syst 27(10):2047–2059

    Article  MathSciNet  Google Scholar 

  30. Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304

    Article  Google Scholar 

  31. Ji J, Pang W, Zhou C, Han X, Wang Z (2012) A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data. Knowl-Based Syst 30:129–135

    Article  Google Scholar 

  32. Zhao W, Dai W, Tang C (2007) K-centers algorithm for clustering mixed type data. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 1140–1147. Springer

  33. Huang Z (1997) Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-asia Conference on Knowledge Discovery and Data Mining, pp. 21–34. Singapore

  34. Goodall DW (1966) A new similarity index based on probability. Biometrics 22(4):882

    Article  Google Scholar 

  35. Hsu C, Wang S (2006) An integrated framework for visualized and exploratory pattern discovery in mixed data. IEEE Trans Knowl Data Eng 18(2):161–173

    Article  Google Scholar 

  36. Hsu C, Chen Y (2007) Mining of mixed data with application to catalog marketing. Expert Syst Appl 32(1):12–23

    Article  Google Scholar 

  37. Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45(6):2251–2265

    Article  MATH  Google Scholar 

  38. Rnyi A (1961) On measures of entropy and information. Proc.fourth Berkeley Symp.on Math.statist. & Prob.univ.of Calif 1(5073):547–561

  39. Liang J, Chin K, Dang C, Yam RC (2002) A new method for measuring uncertainty and fuzziness in rough set theory. Int J Gen Syst 31(4):331–342

    Article  MathSciNet  MATH  Google Scholar 

  40. Cheung Y, Jia H (2013) Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recogn 46(8):2228–2238

    Article  MATH  Google Scholar 

  41. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27(4):857–871

    Article  Google Scholar 

  42. Wangchamhan T, Chiewchanwattana S, Sunat K (2017) Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. Expert Syst Appl 90:146–167

    Article  Google Scholar 

  43. Wilson DR, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 11(1):1–34

    Article  MathSciNet  MATH  Google Scholar 

  44. Stanfill C, Waltz D (1986) Toward memory-based reasoning. Comm Acm 29(12):1213–1228

    Article  Google Scholar 

  45. Yuan K, Xu W, Li W, Weiping D (2022) An incremental learning mechanism for object classification based on progressive fuzzy three-way concept. Inf Sci 584:127–147

    Article  Google Scholar 

  46. Li M, Chen M, Xu W (2019) Double-quantitative multigranulation decision-theoretic rough fuzzy set model. Int J Mach Learn Cybern 10:3225–3244

    Article  Google Scholar 

  47. Xu W, Yu J (2017) A novel approach to information fusion in multi-source datasets: A granular computing viewpoint. Inf Sci 378:410–423

    Article  MATH  Google Scholar 

  48. Chatzis SP (2011) A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Syst Appl 38(7):8684–8689

    Article  Google Scholar 

  49. Zheng Z, Gong M, Ma J, Jiao L, Wu Q (2010) Unsupervised evolutionary clustering algorithm for mixed type data. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8

  50. Ji J, Bai T, Zhou C, Ma C, Wang Z (2013) An improved k-prototypes clustering algorithm for mixed numeric and categorical data. Neurocomputing 120:590–596

    Article  Google Scholar 

  51. Foss A, Markatou M, Ray BK, Heching AR (2016) A semiparametric method for clustering mixed data. Mach Learn 105(3):419–458

    Article  MathSciNet  MATH  Google Scholar 

  52. Williams C, Seeger M (2001) Using the nyström method to speed up kernel machines. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 682–688

  53. Charless F, Serge B, Fan C, Jitendra M (2019) Spectral grouping using the nystrm method. IEEE Trans Pattern Anal Mach Intell 26(2):214–25

    Google Scholar 

  54. Chen W-Y, Song Y, Bai H, Lin C-J, Chang EY (2011) Parallel spectral clustering in distributed systems. IEEE Trans Pattern Anal Mach Intell 33(3):568–586

    Article  Google Scholar 

  55. Cai D, Chen X (2015) Large scale spectral clustering via landmark-based sparse representation. IEEE Transact Cybern 45(8):1669–1680

    Article  Google Scholar 

  56. Liang J, Zhao X, Li D, Cao F, Dang C (2012) Determining the number of clusters using information entropy for mixed data. Pattern Recogn 45:2251–2265

    Article  MATH  Google Scholar 

  57. Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  58. Reshef DN, Reshef YA, Finucane HK, Grossman SR, Mcvean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524

    Article  MATH  Google Scholar 

  59. Yang Y (1999) An evaluation of statistical approaches to yext categorization. Inf Retrieval 1:69–90

    Article  Google Scholar 

  60. Hubert LJ, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2021ZD0112400), National Natural Science Foundation of China (Nos. 62136005, 62106132), the Shanxi Province Science Foundation for Youths (No. 201901D211168, 20210302124271, 202103021223026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Qian, Y., Wang, J. et al. Clustering mixed type data: a space structure-based approach. Int. J. Mach. Learn. & Cyber. 13, 2799–2812 (2022). https://doi.org/10.1007/s13042-022-01602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01602-x

Keywords

Navigation