Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A novel randomised particle swarm optimizer

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The particle swarm optimization (PSO) algorithm is a popular evolutionary computation approach that has received an ever-increasing interest in the past decade owing to its wide application potential. Despite the many variants of the PSO algorithm with improved search ability by means of both the convergence rate and the population diversity, the local optima problem remains a major obstacle that hinders the global optima from being found. In this paper, a novel randomized particle swarm optimizer (RPSO) is proposed where the Gaussian white noise with adjustable intensity is utilized to randomly perturb the acceleration coefficients in order for the problem space to be explored more thoroughly. With this new strategy, the RPSO algorithm not only maintains the population diversity but also enhances the possibility of escaping the local optima trap. Experimental results demonstrate that the proposed RPSO algorithm outperforms some existing popular variants of PSO algorithms on a series of widely used optimization benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Blackwell T, Kennedy J (2018) Impact of communication topology in particle swarm optimization. IEEE Trans Evol Comput 23(4):689–702

    Article  Google Scholar 

  2. Cao J, Bu Z, Gao G, Tao H (2016) Weighted modularity optimization for crisp and fuzzy community detection in large-scale networks. Phys A 462:386–395

    Article  MathSciNet  Google Scholar 

  3. Cao J, Bu Z, Wang Y, Yang H, Jiang J, Li H-J (2019) Detecting prosumer-community group in smart grids from the multiagent perspective. IEEE Trans Syst Man Cybern Syst 49(8):1652–1664

    Article  Google Scholar 

  4. Chen W-N, Zhang J, Lin Y, Chen N, Zhan Z-H, Chung HS-H, Li Y, Shi Y-H (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258

    Article  Google Scholar 

  5. Chen Y, Wang Z, Wang L, Sheng W (2019) Mixed \(H_{2}/H_{\infty }\) state estimation for discrete-time switched complex networks with random coupling strengths through redundant channels. In: IEEE transactions on neural networks and learning systems (in press). https://doi.org/10.1109/TNNLS.2019.2952249

  6. Chen Y, Wang Z, Wang L, Sheng W (2020) Finite-horizon \(H_{\infty }\) state estimation for stochastic coupled networks with random inner couplings using Round–Robin protocol. IEEE Trans Cybern (in press). https://doi.org/10.1109/TCYB.2020.3004288.

  7. Cheng R, Jin Y (2015) A competitive swarm optimizer for large scale optimization. IEEE Trans Cybern 45(2):191–204

    Article  Google Scholar 

  8. Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  9. Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations. Comput Oper Res 67:155–173

    Article  MathSciNet  Google Scholar 

  10. Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195

    Article  Google Scholar 

  11. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan, pp 39–43

  12. Eberhart RC, Shi YH (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation, San Diego, USA, pp 84–88

  13. Eberhart RC, Shi YH (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, Seoul, South Korea, vol 1, pp 81–86

  14. Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305

    MathSciNet  MATH  Google Scholar 

  15. Garcia-Villoria A, Pastor R (2009) Introducing dynamic diversity into a discrete particle swarm optimization. Comput Oper Res 36(3):951–966

    Article  Google Scholar 

  16. Hu M, Wu T, Weir JD (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput 17(5):705–720

    Article  Google Scholar 

  17. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, Perth, Australia, pp 1942–1948

  18. Lehre PK, Witt C (2011) Finite first hitting time versus stochastic convergence in particle swarm optimisation. arXiv:1105.5540

  19. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  20. Liang JJ, Qu BY, Suganthan PN, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report, Zhengzhou University and Nanyang Technological University

  21. Liu Y, Cheng Q, Gan Y, Wang Y, Li Z, Zhao J (2019) Multi-objective optimization of energy consumption in crude oil pipeline transportation system operation based on exergy loss analysis. Neurocomputing 332:100–110

    Article  Google Scholar 

  22. Liu Y, Chen S, Guan B, Xu P (2019) Layout optimization of large-scale oil–gas gathering system based on combined optimization strategy. Neurocomputing 332:159–183

    Article  Google Scholar 

  23. Ma L, Li J, Lin Q, Gong M, Coello CAC, Ming Z (2018) Reliable link inference for network data with community structures. IEEE Trans Cybern 49(9):3347–3361

    Article  Google Scholar 

  24. Ma Q, Li J, Lin Q, Gong M, Coello CAC, Ming Z (2019) Cost-aware robust control of signed networks by using a memetic algorithm. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2932996

  25. Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University Press, New York

    Book  Google Scholar 

  26. Pan X, Xue L, Lu Y, Sun N (2019) Hybrid particle swarm optimization with simulated annealing. Multimed Tools Appl 78(21):29921–29936

    Article  Google Scholar 

  27. Rahman IU, Wang Z, Liu W, Ye B, Zakarya M, Liu X (2020) An n-state Markovian jumping particle swarm optimization algorithm. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2958550

  28. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  29. Schmitt M, Wanka R (2015) Particle swarm optimization almost surely finds local optima. Theoret Comput Sci 561:57–72

    Article  MathSciNet  Google Scholar 

  30. Shi YH, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Proceedings of the 7th international conference on evolutionary programming, San Diego, USA, pp 591–600

  31. Shi YH, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 IEEE congress on evolutionary computation, Washington DC, USA, pp 1945–1950

  32. Song B, Wang Z, Zou L (2017) On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cognit Comput 9(1):5–17

    Article  Google Scholar 

  33. Song B, Wang Z, Zou L, Xu L, Alsaadi FE (2019) A new approach to smooth global path planning of mobile robots with kinematic constraints. Int J Mach Learn Cybernet 10(1):107–119

    Article  Google Scholar 

  34. Taherkhani M, Safabakhsh R (2016) A novel stability-based adaptive inertia weight for particle swarm optimization. Appl Soft Comput 38:281–295

    Article  Google Scholar 

  35. Tang Y, Wang Z, Fang J (2011) Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst Appl 38:2523–2535

    Article  Google Scholar 

  36. Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: Proceedings of the 2003 IEEE congress on evolutionary computation, Canberra, Australia, vol 1, pp 215–220

  37. Wang L, Wang Z, Han Q-L, Wei G (2018) Event-based variance-constrained \({\cal{H}}_{\infty }\) filtering for stochastic parameter systems over sensor networks with successive missing measurements. IEEE Trans Cybern 48(3):1007–1017

    Article  Google Scholar 

  38. Wang L, Wang Z, Wei G, Alsaadi FE (2018) Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol. IEEE Trans Neural Netw Learn Syst 29(4):1046–1057

    Article  Google Scholar 

  39. Xiao X, Mei C, Liu G (2010) Improved particle swarm optimization algorithm based on random perturbations. In: Proceedings of the 2010 third international joint conference on computational science and optimization, Huangshan, China, pp 404–408

  40. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  41. Zeng N, Zhang H, Chen Y, Chen B, Liu Y (2016) Path planning for intelligent robot based on switching local evolutionary PSO algorithm. Assembly Autom 36(2):120–126

    Article  Google Scholar 

  42. Zeng N, Wang Z, Zhang H, Alsaadi FE (2016) A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cognit Comput 8(2):143–152

    Article  Google Scholar 

  43. Zeng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing 320:195–202

    Article  Google Scholar 

  44. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381

    Article  Google Scholar 

  45. Zhan Z-H, Zhang J, Li Y, Shi Y-H (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847

    Article  Google Scholar 

  46. Zou L, Wang Z, Gao H, Liu X (2017) State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under Round-Robin protocol. IEEE Trans Neural Netw Learn Syst 28(5):1139–1151

    Article  Google Scholar 

  47. Zou L, Wang Z, Han Q-L, Zhou DH (2019) Moving horizon estimation of networked nonlinear systems with random access protocol. IEEE Trans Syst Man Cybern Syst (in press). https://doi.org/10.1109/TSMC.2019.2918002

  48. Zou L, Wang Z, Han Q-L, Zhou DH (2019) Full information estimation for time-varying systems subject to Round-Robin scheduling: a recursive filter approach. IEEE Trans Syst Man Cybern Syst (in press). https://doi.org/10.1109/TSMC.2019.2907620

Download references

Acknowledgements

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 820776 (INTEGRADDE), the UK-China Industry Academia Partnership Programme under Grant UK-CIAPP-276, the National Natural Science Foundation of China under Grants 61873148 and 61933007, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Z., Zeng, N. et al. A novel randomised particle swarm optimizer. Int. J. Mach. Learn. & Cyber. 12, 529–540 (2021). https://doi.org/10.1007/s13042-020-01186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01186-4

Keywords

Navigation