Abstract
With the rapid development of hyperspectral remote sensing technology, the spatial resolution and spectral resolution of hyperspectral images are continually increasing, resulting in a continual increase in the scale of hyperspectral data. At present, hyperspectral lossless compression technology has reached a bottleneck. Simultaneously, the rise of deep learning has provided us with new ideas. Therefore, this paper examines the use of deep learning for the lossless compression of hyperspectral images. In view of the differential pulse code modulation (DPCM) method being insufficient for predicting spectral band information, the proposed method, called C-DPCM-RNN, uses a deep recurrent neural network (RNN) to improve the traditional DPCM method and improve the generalization ability and prediction accuracy of the model. The final experimental result shows that C-DPCM-RNN achieves better compression on a set of calibrated AVIRIS test images provided by the Multispectral and Hyperspectral Data Compression Working Group of the Consultative Committee for Space Data Systems in 2006. C-DPCM-RNN overcomes the limits of traditional methods in its performance on uncalibrated AVIRIS test images.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lin CC, Hwang YT (2010) An efficient lossless compression scheme for hyperspectral image using two-stage prediction. IEEE Geosci Remote Sens Lett 7(3):558–562
Aiazzi B, Alba B, Alparone L, et.al (1999) Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction. IEEE Geosci Remote Sens Lett 37(5):2287–2294
Rao AK, Bhangava S (1996) Multispectral data compression using bidimentional interband prediction. IEEE Trans Remote Sens 34(2):228–240
Wang L, Wu J, Jiao L, et.al (2006) Lossy-to-lossless hyperspectral image compression based on multiplierless reversible integer TDLT/KLT. IEEE Geosci Remote Sens Lett 6(3):587–591
Saghri JA, Tescher AG, Reagan JT (1995) Transform Coding of Multispectral Imagery. IEEE Signal Process Mag 12(1):32–43
Abousleman GP, Marcellin MW, Hunt BR (1995) Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT. IEEE Trans Remote Sens 33(1):26–35
Ma J, Wu CK, Li YS et al (2009) Dual-direction prediction vector quantization for lossless compression for LASIS data. In: Proceedings of IEEE data compression conference, Snowbird, Utah, USA, Mar, pp 458–467
Ryan MJ, Arnold JF (1997) Lossy compression of hyperspectral data using vector quantization. Remote Sens Environ 61(3):419–436
Canta GR, Poggi G (1998) Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding. IEEE Trans Image Process 7(5):668–678
Wu X, Memon ND (2000) Context-based lossless interband compression—extending CALIC. IEEE Trans Image Process 9(6):994–1001
Magli E, Olmo G, Quacchio E (2004) Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci Remote Sens Lett 1(1):21–25
Gao ZC, Zhang XL (2011) Lossless compression of hyperspectral images using improved locally averaged inter band scaling lookup tables. In: International conference on wavelet analysis and pattern recognition, pp 91–96
Huang B, Sriraja Y (2006) Lossless compression of hyperspectral imagery via lookup tables with predictor selection. In: Remote sensing. International society for optics and photonics, 2006: 6365, pp 63650L–63650L-8
Abrardo A, Barni M, Magli E et al (2010) Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding. IEEE Trans Geosci Remote Sens 48(4):1892–1904
Kiely AB, Klimesh MA (2009) Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Trans Geosci Remote Sens 47(8):2672–2678
Mielikainen J, Toivanen P (2003) Clustered DPCM for the lossless compression of hyperspectral image. IEEE Trans Geosci Remote Sens 41(12):2943–2946
Howard PG, Vitter JS (1987) Arithmetic coding for data compression. Commun ACM 30(6):857–865
Howard PG, Vitter JS (1992) New methods for lossless image compression using arithmetic coding. Inf Process Manage 26(6):765–779
Hao PW, Shi QY (2003) Reversible integer KLT for progressive-to-lossless compression of multiple component images. In: Proceeding of IEEE international conference on image processing, Barcelona, Spain: pp 633–636
Sweldens W (1996) The lifting scheme: a custom design construction of biorthogonal wavelets. J Appl Comput Harmon Anal 3(2):186–200
Abousleman GP, Marcellin MW, Hunt BR (1995) Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT. IEEE Trans Geosci Remote Sens 33(l):26–34
Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images, hyperspectral data compression. Springer, New York, pp 273–308
Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428
Ryan MJ, Pickering MR (2000) An improved M-NVQ algorithm for the compression of hyperspectral data. In: IEEE IGARSS’2000, 2000, pp 600–602
Ryan MI, Arnold JF (1997) The lossless compression of AVIRIS images by vector quantization. IEEE Trans Geosci Remote Sens 35(3):546 ~ 550
Kamano A, Morimoto M, Nagura R (2000) Multispectral image compression using hierarchical vector quantization. IEEERSS, pp 1856–1858
Qian SE (2004) Hyperspectral data compression using a fast vector quantization algorithm. IEEE Trans Geosci Remote Sens 42(8):1791 ~ 1798
Sepp H, Jürgen S (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Felix A, Gers,Jürgen Schmidhuber, F, Cummins (2000) Learning to forget: continual prediction with LSTM. Neural Comput 12(10):2451–2471
Chung J, Gulcehre C, Cho KyungHyun, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. Eprint Arxiv
Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324
Aiazzi B, Alparone L, Baronti S (2012) Quality issues for compression of hyperspectral imagery through spectrally adaptive DPCM. In: Satellite data compression. Springer, New York, pp 115–147
Mielikainen J (2006) Lossless compression of hyperspectral images using lookup tables. IEEE Signal Process Lett 13(3):157–160
Slyz M, Zhang L (2005) A block-based inter-band lossless hyperspectral image compressor. In Processing of IEEE data compression conference, pp 427–436
Mielikainen J, Huang B (2012) Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length. IEEE Geosci Remote Sens Lett 9(6):1118–1121
Wu J, Kong W, Huang B, Mielikainen J (2015) Lossless compression of hyperspectral imagery via clustered differential pulse code modulation with removal of local spectral outliers. IEEE Signal Process Lett 22(12):2194–2198
Acknowledgements
This work is supported by National Natural Science Foundation of China nos. 61775175 and 61771378, Shenzhen Technology Project (JCYJ20170413152535587, JCYJ 20170307164023599, JSGG20170823091924128).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Luo, J., Wu, J., Zhao, S. et al. Lossless compression for hyperspectral image using deep recurrent neural networks. Int. J. Mach. Learn. & Cyber. 10, 2619–2629 (2019). https://doi.org/10.1007/s13042-019-00937-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-019-00937-2