Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An improved fingerprint orientation field extraction method based on quality grading scheme

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Orientation pattern is an important feature for characterizing fingerprint and plays a very important role in the automatic fingerprint identification system (AFIS). Conventional gradient based methods are popular but very sensitive to noise. In this paper, we present an improved fingerprint orientation field (FOF) extraction method based on quality grading scheme. In order to effectively remove the noise, the point orientations are fitted by using 2D discrete orthogonal polynomial. The role of the gradient modulus is taken into full account, and the weights of the point orientations are obtained by computing the similarity of the fitted point orientations. The block qualities are assessed by the coherence of point orientations and the block orientations are estimated based on quality grading scheme. In the proposed method, it does not need any prior knowledge of singular points. To validate the performance, the proposed method has been applied to fingerprint singularity detection and fingerprint recognition. We compared the proposed method with other state-of-the-art fingerprint orientation estimation algorithms. Our statistical experiments show that the proposed method can significantly improve in both singular point detection and matching rates, and it is more robust against noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wen X, Shao L, Xue Y et al (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406

    Article  Google Scholar 

  2. Xia Z, Wang X, Zhang L et al (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inf Forensics Security. doi:10.1109/TIFS.2016.2590944

    Google Scholar 

  3. Zhou Z, Wang Y, Jonathan Q et al (2016) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Security. doi:10.1109/TIFS.2016.2601065

    Google Scholar 

  4. Wei X, Wang H, Guo G et al (2015) Multiplex image representation for enhanced recognition. Int J Mach Learn Cyber. doi:10.1007/s13042-015-0427-5

    Google Scholar 

  5. Maltoni D, Maio D, Jain A, et al. (2009) Handbook of fingerprint recognition, 2nd edn. Springer-Verlag, London, UK

    Book  MATH  Google Scholar 

  6. Gottschlich C (2012) Curved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancement. IEEE Trans Image Process 21(4):2220–2227

    Article  MathSciNet  MATH  Google Scholar 

  7. Sutthiwichaiporn P, Areekul V (2013) Adaptive boosted spectral filtering for progressive fingerprint enhancement. Pattern Recogn 46(9):2465–2486

    Article  Google Scholar 

  8. Karu K, Jain A (1996) Fingerprint classification. Pattern Recognit 29(3):389–404

    Article  Google Scholar 

  9. Bazen A, Gerez S (2002) Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans Pattern Anal Mach Intell 24(7):905–919

    Article  Google Scholar 

  10. Zhou J, Chen F, Gu J (2009) A novel algorithm for detecting singular points from fingerprint images. IEEE Trans Pattern Anal Mach Intell 31(7):1239–1250

    Article  Google Scholar 

  11. Liu M (2010) Fingerprint classification based on Adaboost learning from singularity features. Pattern Recognit 43(3):1062–1070

    Article  MATH  Google Scholar 

  12. He Y, Tian J, Li L et al (2006) Fingerprint matching based on global comprehensive similarity. IEEE Trans Pattern Anal Mach Intell 28(6):169–177

    Google Scholar 

  13. Feng J (2008) Combining minutiae descriptors for fingerprint matching. Pattern Recognit 41(1):342–352

    Article  MATH  Google Scholar 

  14. Cao K, Yang X, Chen X (2012) A novel ant colony optimization algorithm for large-distorted fingerprint matching. Pattern Recognit 45(1):151–161

    Article  Google Scholar 

  15. Kass M, Witkin A (1987) Analyzing oriented patterns. Comput Vis Graph Image Process 37(3):362–385

    Article  Google Scholar 

  16. Rao A, Jain R (1992) Computerized flow field analysis: oriented texture fields. IEEE Trans Pattern Anal Machine Intell 14(7):693–709

    Article  Google Scholar 

  17. Jiang X (2005) On orientation and anisotropy estimation for online fingerprint authentication. IEEE Trans Signal Process 53(10):4038–4049

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang Y, Hu J, Han F (2007) Enhanced gradient-based algorithm for the estimation of fingerprint orientation fields. Appl Math Comput 185(2):823–833

    MATH  Google Scholar 

  19. Jiang X (2007) Extracting image orientation feature by using integration operator. Pattern Recognit 40(2):705–717

    Article  MathSciNet  MATH  Google Scholar 

  20. Mei Y, Cao G, Sun H et al (2012) A systematic gradient-based method for the computation of fingerprint’s orientation field. Comput Electr Eng 38:1035–1046

    Article  Google Scholar 

  21. Sherlock B, Monro D (1993) A model for interpreting fingerprint topology. Pattern Recognit 26:1047–1055

    Article  Google Scholar 

  22. Li J, Yau W, Wang H (2006) Constrained nonlinear models of fingerprint orientations with prediction. Pattern Recognit 39(1):102–114

    Article  Google Scholar 

  23. Ram S, Bischof H, Brichbauer J (2010) Modelling fingerprint ridge orientation using Legendre polynomials. Pattern Recognit 43(1):342–357

    Article  MATH  Google Scholar 

  24. Jirachaweng S, Hou Z, Yau W et al (2011) Residual orientation modeling for fingerprint enhancement and singular point detection. Pattern Recognit 44(2):431–442

    Article  MATH  Google Scholar 

  25. Bian W, Luo Y, Xu D et al (2014) Fingerprint ridge orientation field estimation using the best quadratic approximation by orthogonal polynomials in two discrete variables. Pattern Recognit 47(10):3304–3313

    Article  Google Scholar 

  26. Perona P (1998) Orientation diffusions. IEEE Trans Image Process 7(3):457–467

    Article  Google Scholar 

  27. Liu M, Liu S, Zhao Q (2014) Fingerprint orientation field estimation by weighted discrete cosine transform. Inf Sci 268:65–77

    Article  Google Scholar 

  28. Karu K, Jain AK (1996) Fingerprint classification. Pattern Recognit 29(3):389–404

    Article  Google Scholar 

  29. Tico M, Kuosmanen P (2003) Fingerprint matching using an orientation-based minutia descriptor. IEEE Trans Pattern Anal Machine Intell 25(8):1009–1014

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the National Natural Science Foundation of China under Grant No. 61672522, Anhui Provincial Natural Science Foundation under Grant No. 1708085MF145, the Priority Academic Program Development of Jiangsu Higer Education Institutions (PAPD), and the Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, W., Ding, S. & Xue, Y. An improved fingerprint orientation field extraction method based on quality grading scheme. Int. J. Mach. Learn. & Cyber. 9, 1249–1260 (2018). https://doi.org/10.1007/s13042-016-0627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0627-7

Keywords

Navigation