Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A three stage integrated denoising approach for grey scale images

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Restoration of the images contaminated with Additive White Gaussian Noise (AWGN) is a fundamental operation at the interface of statistical and functional analysis. It is an extremely exigent job to design a noise suppression algorithm with edge and feature detail preservation owing to random manifestation of the noise amongst the pixels. In spite of documentation of the sophisticated denoising algorithms in literature, a desired amount of applicability is not achieved as they leave residual noise, create artifacts and remove fine structures. In this paper we propose an integrated image denoising algorithm which exploits the bit plane slicing based image decomposition approach for residual noise removal especially at higher noise levels. The intuitive idea of segregation of noise in decomposed bit planes and selective criterion of denoising lower order bit planes with adaptive bitonic filtering is able to preserve feature details while showing strong denoising performance. Experimental analysis shows that the proposed methodology gives considerable results at low noise values and outperforms other existing techniques at higher noise values both in terms of qualitative and quantitative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anchal et al (2018) An efficient image denoising scheme for higher noise levels using spatial domain filters. Biomed Pharmacol J 11(2):625–634

    Article  Google Scholar 

  • Arunkumar N, Ramkumar K, Venkatraman V, Abdulhay E, Fernandes SL, Kadry S, Segal S (2017) Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94:112–117

    Article  ADS  Google Scholar 

  • Bavirisetti D, Dhuli R (2016) Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens J 16(1):203–209

    Article  ADS  Google Scholar 

  • Buades A, Bartomeu Coll, Morel J-M (2005) “A non-local algorithm for image denoising.” In: IEEE Computer Society Conference on Computer vision and pattern recognition, 2005. CVPR 2005, vol. 2, pp. 60–65

  • Chang S, Grace B, Yu, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  • Chatterjee P, Milanfar P (2010) Is denoising dead? IEEE Trans Image Process 19(4):895–911

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Chaudhury KN, Rithwik K (2015) “Image denoising using optimally weighted bilateral filters: a SURE and fast approach.” In: IEEE International Conference on Image Processing (ICIP), pp. 108–112

  • Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Joint image sharpening and denoising by 3D transform-domain collaborative filtering. In: Proc. 2007 Int. TICSP Workshop Spectral Meth. Multirate Signal Process. SMMSP, vol 2007

  • Dogra A, Bhawna G, Sunil A (2017a) “Current and future orientation of anatomical and functional imaging modality fusion. Biomed Pharmacol J 10(4):1661–1663

    Article  Google Scholar 

  • Dogra A, Bhawna G, Agrawal S (2017b) From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications. IEEE Access 5:16040–16067

    Article  Google Scholar 

  • Dogra A, Bhawna G, Agrawal S (2018) Osseous and digital subtraction angiography image fusion via various enhancement schemes and Laplacian pyramid transformations. Futur Gener Comput Syst 82:149–157

    Article  Google Scholar 

  • Elad M (2002) On the origin of the bilateral filter and ways to improve it. IEEE Trans Image Process 11(10):1141–1151

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Gonzalez RC, Woods RE (2002) “Digital image processing”. Publishing House of Electronics Industry, Beijing

    Google Scholar 

  • Goyal B, Dogra A, Agrawal S, Sohi BS (2017) Dual way residue noise thresholding along with feature preservation. Pattern Recogn Lett 94:194–201

    Article  ADS  Google Scholar 

  • Goyal B, Ayush D, Agrawal S, Sohi BS (2018) “Two-dimensional gray scale image denoising via morphological operations in NSST domain and bitonic filtering. Futur Gener Comput Syst 82:158–175

    Article  Google Scholar 

  • Knaus C, Zwicker M (2014) Progressive image denoising. IEEE Trans Image Process 23(7):3114–3125

    Article  MathSciNet  PubMed  Google Scholar 

  • Kumar BKS (2013) Image denoising based on Gaussian/bilateral filter and its method noise thresholding. Signal Image Video Process 7(6):1159–1173

    Article  Google Scholar 

  • Kumar BK, Shreyamsha (2013) Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process 7(6):1211–1227

    Article  Google Scholar 

  • Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  • Portilla J, Strela V, Wainwright MJ, Simoncelli EP (2003) “Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12(11):1338–1351

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Rajinikanth V, Madhavaraja N, Satapathy SC, Fernandes SL (2017a) Otsu’s multi-thresholding and active contour snake model to segment dermoscopy images. J Med Imaging Health Inform 7(8):1837–1840

    Article  Google Scholar 

  • Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017b) Entropy based segmentation of tumor from brain MR images—a study with teaching learning based optimization. Pattern Recogn Lett 15:94:87–95

    Article  ADS  Google Scholar 

  • Ranjan R, Arya R, Fernandes SL, Sravya E, Jain V (2018) A fuzzy neural network approach for automatic K-complex detection in sleep EEG signal. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2018.01.001

    Article  Google Scholar 

  • Ritwik K (2010) https://in.mathworks.com/matlabcentral/fileexchange/28112-diffusion-filtering-for-image-denoising. Accessed 21 Jan 2018

  • Shah JH, Sharif M, Yasmin M, Fernandes SL (2017) Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2017.06.021

    Article  Google Scholar 

  • Shahdoosti HR (2017) “Two-stage image denoising considering interscale and intrascale dependencies. J Electron Imaging 26(6):63029

    MathSciNet  Google Scholar 

  • Shao L, Ruomei Y, Li X, Liu Y (2014) From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans Cybern 44(7):1001–1013

    Article  PubMed  Google Scholar 

  • Talebi H, Peyman M (2014) Global image denoising. IEEE Trans Image Process 23(2):755–768

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Tomasi C, Manduchi R (1998) “Bilateral filtering for gray and color images.” In: Sixth international conference on computer vision, 1998, IEEE, pp 839–846

  • Treece G (2016) The bitonic filter: linear filtering in an edge-preserving morphological framework. IEEE Trans Image Process 25(11):5199–5211

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Yang H, Wang X-Y, Niu P-P, Yang-Cheng L (2014) “Image denoising using nonsubsampled shearlet transform and twin support vector machines.” Neural Netw 57:152–165

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawna Goyal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, B., Dogra, A., Agrawal, S. et al. A three stage integrated denoising approach for grey scale images. J Ambient Intell Human Comput 15, 1029–1044 (2024). https://doi.org/10.1007/s12652-018-1019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-1019-5

Keywords

Navigation