Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Investigation of DNA discontinuity for detecting tuberculosis

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Discontinuity in long Deoxyribonucleic Acid (DNA) sequences creates harmful diseases. Changes in the DNA structure refers to changes in the human immunity system. Tuberculosis is a critical disease that causes coughing, fatigue, unintentional weight loss and fever on aged people due to the disorder in the DNA. Breaks or mutations over long DNA sequences are the pivotal reasons for this fatal disease. This study developed an automated machine learning technique to assess the total number of such breaks in the long DNA sequences. Data cleansing and deep neural network techniques are applied to handle this big data. The National Center for Biotechnology Information (NCBI) database has been used to extract the amino acid sequences for Tuberculosis disease from the big DNA datasets. Results reveal that the proposed automated approach is significantly effective for the determination of DNA sequence breaks for the tuberculosis diseases due to the high sensitivity of Markov chain as well as the effective normalization techniques. This approach fixed the size of the training datasets and recursively divide the whole dataset into certain length. The study also adopts multiple predictions approaches, such as the hidden Markov chain, Box-Cox transformation and linear transformation to forecast about the breaks for any long positions of the training and testing datasets. The results demonstrated that hidden the Markov chain model provided faster analysis with more accurate and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anandakumar S, Shanmughavel P (2008a) Computational annotation for hypothetical proteins of Mycobacterium tuberculosis, J ComputSciSystBiol 1:050–062. https://doi.org/10.4172/jcsb.1000004

    Article  CAS  Google Scholar 

  • Anandakumar S, Shanmughavel P (2008b) Computational annotation for hypothetical proteins of mycobacterium tuberculosis, J Comput Sci Syst Biol 641046, JCSB/Vol. 1, TamilNadu

  • Barik MR et al (2018) Normalised quantitative polymerase chain reaction for diagnosis of tuberculosis-associated uveitis. Tuberculosis 110:30–35

    Article  CAS  PubMed  Google Scholar 

  • Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303

    Article  CAS  PubMed  Google Scholar 

  • Bibicu D, Moraru L, Biswas A (2013) Thyroid nodule recognition based on feature selection and pixel classification methods. J Digit Imaging 26(1):119–128. https://doi.org/10.1007/s10278-012-9475-5

    Article  PubMed  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

    Google Scholar 

  • Burkett KM, McNeney B, Graham J (2016) Sampletrees and Rsampletrees: sampling gene genealogies conditional on SNP genotype data. Bioinformatics 32(10):1568–1570

    Article  Google Scholar 

  • Canaan S, Sulzenbacher G, Zamboni V, Calvo LS, Frassinetti F, Maurin D, Cambillau C, Bourne Y (2005) Crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis. FEBS Lett 579:215–221. https://doi.org/10.1016/j.febslet.2004.11.069 (ISSN 0014-5793)

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante RG, Patil S, Weymouth TE, Bendinskas KG, Karnovsky A, Maureen A (2016) Sartor ConceptMetab: exploring relationships among metabolite sets to identify links among biomedical concepts. Bioinformatics 32(10):1536–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debasree S, Piya P, Abhirupa G, Sudipto S (2016) Computational framework for prediction of peptide sequences that may mediate multiple protein interactions in cancer associated hub proteins. PLos One 11(5):e0155911

    Article  Google Scholar 

  • Deng L, Yu D (2014) Deep learning: methods and applications (PDF). Found Trends Signal Process 7(3–4):1–199

    Google Scholar 

  • Deng SP, Zhu L, Huang DS (2016) Predicting hub genes associated with cervical cancer through gene co-expression networks. IEEE/ACM Trans Comput Biol Bioinform 13:27–35

    Article  CAS  PubMed  Google Scholar 

  • Desalegn D (2017) Factors affecting tuberculosis case detection in Kersa District, South West Ethiopia. J Clin Tuber Other Mycobact Dis 9:1–4. https://doi.org/10.1016/j.jctube.2017.08.003 (ISSN 2405–5794)

    Article  Google Scholar 

  • Dhulekar N, Ray S, Yuan D, Baskaran A, Oztan B, Larsen M, Yene B (2016) Prediction of growth factor-dependent cleft formation during branching morphogenesis using a dynamic graph-based growth model. IEEE/ACM Trans Comput Biol Bioinform 13:350–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerks T, van Noort V, Minguez P, Bork P (2012a) Annotation of the M. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. PLoS One 7(4):e34302. https://doi.org/10.1371/journal.pone.0034302

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerks T, Noort VV, Minguez P, Bork P (2012b) Annotation of the M. tuberculosis hypothetical orfeome: adding functional information to more than half of the uncharacterized proteins. PLoS One 7(4):e34302. https://doi.org/10.1371/journal.pone.0034302

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez JG, Schmidt B (2016) ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32(10):1562–1564

    Article  Google Scholar 

  • Dong Q, Hu Z (2016) Statistics of visual responses to object stimuli from primate AIT neurons to DNN neurons. arXiv preprint. arXiv:1612.03590

  • Edelman A, Heller S, Johnsson SL (1994) Index transformation algorithms in a linear algebra framework. IEEE Trans Parallel Distrib Syst 5(12):1302–1309

    Article  Google Scholar 

  • Erhan D, Bengio Y, Courville A, Manzagol P, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11:625–660

    MathSciNet  Google Scholar 

  • Fdez JA, Alonso JM (2016) A survey of fuzzy systems software: taxonomy, current research trends and prospects. IEEE Trans Fuzzy Syst 24:40–56

    Article  Google Scholar 

  • Fernández-Calleja V, Hernández P, Schvartzman JB, de Lacoba MG, Krimer DB (2017) Differential gene expression analysis by RNA-seq reveals the importance of actin cytoskeletal proteins in erythroleukemia cells. PeerJ 5:e3432

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogeweg L, Sánchez CI, Maduskar P, Philipsen R, Story A, Dawson R, Theron G, Dheda K, Peters-Bax L, Van Ginneken B (2015) Automatic detection of tuberculosis in chest radiographs using a combination of textural, focal, and shape abnormality analysis. IEEE Trans Med Imaging 34(12):2429–2442

    Article  PubMed  Google Scholar 

  • Hooda R, Sofat S, Kaur S, Mittal A, Meriaudeau F (2017) Deep-learning: a potential method for tuberculosis detection using chest radiography. In: Signal and image processing applications (ICSIPA), 2017 IEEE International Conference on. IEEE, Piscataway. https://doi.org/10.1109/ICSIPA.2017.8120663

    Chapter  Google Scholar 

  • Hripcsak G, Knirsch CA, Jain NL, Pablos-Mendez A (1997) Automated tuberculosis detection. J Am Med Inform Assoc 4(5):376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh SY, Chou YU (2016) A faster cDNA microarray gene expression data classifier for diagnosing diseases. IEEE/ACM Trans Comput Biol Bioinform 13:43–54

    Article  CAS  PubMed  Google Scholar 

  • Joshua TB, Laura VC, Nathan CW, Sally AS, Mark NA, Nicholas WA, Benjamin S, Ken OB, Derek JR (2014) DNA repair pathways and their therapeutic potential in lung cancer. Lung Cancer Manag 3:159–173

    Article  Google Scholar 

  • Kamal MS, Nimmy SF (2017) StrucBreak: a computational framework for structural break detection in DNA sequences. Interdiscip Sci Comput Life Sci 9(4):512–527

    Article  CAS  Google Scholar 

  • Kamal MS, Sarowar MG, Dey N, Ashour AS, Ripon SH, Panigrahi BK, Tavares JMR (2017) Self-organizing mapping based swarm intelligence for secondary and tertiary proteins classification. Int J Mach Learn Cyber. https://doi.org/10.1007/s13042-017-0710-8

    Article  Google Scholar 

  • Kant S, Srivastava MM (2018) Towards Automated Tuberculosis detection using Deep Learning, eprint arXiv:1801.07080, Computer Science—Computer Vision and Pattern Recognition, 2018 arXiv:180107080K

  • Kumar K, Prakash A, Anjum F, Islam A, Ahmad F, Hassan MI (2015) Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets. 3 Biotech 5(4):561–576. https://doi.org/10.1007/s13205-014-0256-3

    Article  PubMed  Google Scholar 

  • Kumar A, Sharma A, Kaur G, Makkar P, Kaur J (2016), Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach, https://doi.org/10.1080/07391102.2016.1174738

  • Lawn SD (2015) Advances in diagnostic assays for tuberculosis. Cold Spring Harbor Perspect Med 5(12):a017806. https://doi.org/10.1101/cshperspect.a017806

    Article  Google Scholar 

  • Li X, Jin X, Wang H, Zhang X, Lin Z (2016) Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res 23(3):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao S, Tammaro M, Yan H (2016) The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair. Nucleic Acids Res 15

  • Lin Y, Zhang H, Zhu N, Wang X, Han Y, Chen M, Jiang J, Si S (2018) Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Tuberculosis 110:79–85

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhao M (2016) lnCaNet: pan-cancer co-expression network for human lncRNA and cancer genes. Bioinformatics 32(10):1595–1597

    Article  CAS  PubMed  Google Scholar 

  • Machado MR, Pantano S (2016), SIRAH tools: mapping, backmapping and visualization of coarse-grained models. Bioinformatics 32(10):1568–1570

    Article  CAS  PubMed  Google Scholar 

  • Mazandu GK, Mulder NJ (2012) Function prediction and analysis of Mycobacterium tuberculosis hypothetical proteins. Int J Mol Sci 13(6):7283–7302. https://doi.org/10.3390/ijms13067283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melendez J, Sánchez CI, Philipsen RHHM, Maduskar P, Dawson R, Theron G, Dheda K, van Ginneken B (2016) An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 6:25265. https://doi.org/10.1038/srep25265

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MJ, Geske P, Haiyuan Y (2016) BISQUE: locus- and variant-specific conversion of genomic, transcriptomic and proteomic database identifiers. Bioinformatics 32(10):1598–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ”Mycobacterium tuberculosis”. Sanger Institute. 2007-03-29. Retrieved 2008-11-16

  • Nahid P, Kim PS, Evans CA, Alland D, Barer M, Diefenbach J, Swindells S (2012) Clinical research and development of tuberculosis diagnostics: moving from silos to synergy. J Infect Dis 205(Suppl 2):S159–S168. https://doi.org/10.1093/infdis/jis194

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolau I, Ling D, Tian L, Lienhardt C, Pai M (2012) Research questions and priorities for tuberculosis: a survey of published systematic reviews and meta-analyses. PLoS One 7(7):e42479. https://doi.org/10.1371/journal.pone.0042479

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, White BS, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova Y, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Wenjun L, Donna M, Patrick M, Kelly M, Mc MRM, O’Neill K, Shashikant P, Sanjida HR, Daniel R, Riddick LD, Conrad S, Andrei S, Susan SS, Hanzhen S, Francoise TN, Igor T, Raymond ET, Anjana RV, Craig W, Wendy DW, Melissa W, AviKimchi JL, Tatiana T, DiCuccio M, Paul K, Terence DM, Kim DP (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res, 4(44):D733–D745 (Database issue)

    Article  Google Scholar 

  • Palacios A, Sanchez L, Couso I (2016) An extension of the FURIA classification algorithm to low quality data through fuzzy rankings and its application to the early diagnosis of dyslexia. Neurocomputing 176:60–71

    Article  Google Scholar 

  • Rabiner LH, Juang BH (1986) An introduction to hidden Markov models, IEEE ASSp Magazine

  • Rivera-Borroto OM, García-de la Vega JM, Marrero-Ponce Y, Grau R (2016) Relational agreement measures for similarity searching of cheminformatic data sets. IEEE/ACM Trans Comput Biol Bioinf (TCBB) 13(1):158–167

    Article  Google Scholar 

  • Robertson BD, Altmann D, Barry C, Bishai B, Cole S, Dick T, Duncan K, Dye C, Ehrt S, Esmail H, Flynn J (2012) Detection and treatment of subclinical tuberculosis. Tuberculosis 92(6):447–452

    Article  PubMed  Google Scholar 

  • Rodolfo A, Shirolkar A, Fraze C, Stout DA (2011) Characterization of myocardium muscle biostructure using first order features. Dig J Nanomater Biostruct 6(3):1357–1363 (Published: JUL-SEP)

    Google Scholar 

  • Sáez JA, Galar M, Luengo J, Herrera F (2016), INFFC: an iterative class noise filter based on the fusion of classifiers with noise sensitivity control. Inf Fusion 27:505–636

    Article  Google Scholar 

  • Sáez JA, Luengo J, Herrera F (2016), Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure. Neurocomputing 176:26–35

    Article  Google Scholar 

  • Sancho-Asensio A, Orriols-Puig A, Casillas J (2016) Evolving association streams. Inf Sci. 334–335:250–272

    Article  Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  • Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17:379–394

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Lin N, Zhang Y, Huang C, Liu L, Lu B, Cheng J (2013) Research on Markov property analysis of driving cycle. In: IEEE vehicle power and propulsion conference (VPPC), Beijing, pp 1–5

  • Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins—a review. Bioinformation 1(8):335–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng J, Ahuja N, Huang TS (1997), “Learning recognition and segmentation of 3-D objects from 2-D images. In: Proceedings of 4th International Conference Computer Vision, Berlin, Germany, pp. 121–128

  • WHO (2009) Global tuberculosis control: a short update to the Report

  • Yafei L, Li Q (2016) A semi-parametric statistical model for integrating gene expression profiles across different platforms. BMC Bioinform 17(5)

  • Youyou Z et al (2016) Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira S. Ashour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmy, S.F., Sarowar, M.G., Dey, N. et al. Investigation of DNA discontinuity for detecting tuberculosis. J Ambient Intell Human Comput 15, 1149–1163 (2024). https://doi.org/10.1007/s12652-018-0878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0878-0

Keywords

Navigation