Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Energy-efficient analysis of an IEEE 802.11 PCF MAC protocol based on WLAN

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The point coordination function (PCF) of the IEEE 802.11 standard represents a well-known medium access control (MAC) protocol providing quality-of-service guarantees in wireless local area networks (WLANs). However, few papers theoretically analyze energy efficiency. This paper presents a Parallel Gated Poll (PGP) access mechanism that exploits the PCF defined in the IEEE 802.11. The basic idea is, during the contention free period, idle stations can save energy by turning into sleep and active stations exchange data packet under a gated service polling scheme to improve the energy efficiency. Besides, the mean cycle analysis model is setup to evaluate the energy efficiency of a typically PCF protocol and PGP protocol. By applying the classic 1-limited and parallel gated polling model, the closed expressions of energy efficiency of PCF and PGP are formulated respectively. Simulations show that our analytical results are very accurate with the simulation results. Both analytical and simulation results show the high energy efficiency of PGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Angelopoulos G, Medard M, Chandrakasan A (2017) Harnessing partial packets in wireless networks: throughput and energy benefits. IEEE Trans Wireless Commun 16(2):694–704

    Article  Google Scholar 

  • Balador A, Calafate A, Cano J (2016) A reliable token-based MAC protocol for V2V communication in urban VANET. In: Proceedings of the 2016 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’2016) 16556048

  • Chan SCF, Chan KM, Liu K, Lee JYB (2014) On queue length and link buffer size estimation in 3G/4G mobile data networks. IEEE Trans Mob Comput 13(6):1298–1311

    Article  Google Scholar 

  • Chou K, Lin W (2013) Performance analysis of packet aggregation for IEEE 802.11 PCF MAC-based wireless network. IEEE Trans Wirel Commun 12(4):1441–1447

    Article  Google Scholar 

  • Dorsman JPL, Borst SC, Boxma OJ et al (2015) Markovian polling systems with an application to wireless random-access networks. Perform Eval 85(3):33–51

    Article  Google Scholar 

  • Feng L, Li J, Lin X (2013) A new delay analysis for IEEE 802.11 PCF. IEEE Trans Veh Technol 62(8):4064–4069

    Article  Google Scholar 

  • Ibe OC, Cheng X (1988) Stability conditions for multi-queue systems with cyclic service. IEEE Tans Automat Control 33(1):102–103

    Article  MATH  Google Scholar 

  • IEEE 802.11 Std (2012) IEEE, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications

  • IEEE 802.11e Std (2005) Specific requirements Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Amendment 8: Medium Access Control (MAC) quality of service enhancements

  • Kamerman A, Monteban L (1997) WaveLAN-II: a high-performance wireless LAN for the unlicensed band. Bell Labs Technical J 2(3):118–133

    Article  Google Scholar 

  • Li J, Fan Y, Chen H et al (2014) Performance analysis for WLAN medium access control protocol in simulcast radio-over-fiber-based distributed antenna systems. China Commun 11(5):37–48

    Article  Google Scholar 

  • Li F, Yu J, Zhao F, Jiang H (2017) A novel analysis of delay and power consumption for polling schemes in IoT. Tinghua Sci Technol 22(4):368–378

    Article  Google Scholar 

  • Liu QL, Zhao DF, Zhou DM (2011) An analytic model for enhancing IEEE 802.11 point coordination function media access control protocol. Eur Trans Telecommun 22(6):332–338

    Article  Google Scholar 

  • Mercian A, Gurrola EI, Aurzada F et al (2016) Upstream polling protocols for flow control in PON/xDSL hybrid access networks. IEEE Trans Commun 64(7):2971–2984

    Article  Google Scholar 

  • Moharir S, Krishnasamy S, Shakkottai S. [J] (2017) Scheduling in densified networks: algorithms and performance. IEEE/ACM Trans Networking 25(1):164–178

    Article  Google Scholar 

  • Muhammad BR, Nadeem J, Muhammad AI, Athanasios V (2017) Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Netw 23(4):1249–1266

    Article  Google Scholar 

  • Panagiotakis A, Nicopolitidis P, Papadimitriou GI et al (2015) Performance increase for highly-loaded RoF access networks. IEEE Commun Lett 19(9):1628–1631

    Article  Google Scholar 

  • Raul P, Fabrizio G, Danica G, Christian L, Dzmitry K (2013) An energy-efficient point coordination function using bidirectional transmissions of fixed duration for infrastructure IEEE 802.11 WLANs. In: Proceedings of the 2013 IEEE International Conference on Communications (ICC’ 2013) 1036–1041

  • Raul P, Jesus A, Dzmitry K et al. (2015) Analysis of an energy-efficient MAC protocol based on polling for 802.11 WLAN. In: Proceedings of the 2015IEEE International Conference on Communication (ICC’ 2015) 5941–5947

  • Sao SLT, Huang CH (2011) Review: a survey of energy efficient MAC protocols for IEEE 802.11 WLAN. ACM Comput Commun 34(1):54–67

    Article  Google Scholar 

  • Satish A, Minglu J (2016) Energy-efficient hybrid CCC-Based MAC protocol for cognitive radio Ad Hoc networks. IEEE Syst J 10(1):358–369

    Article  Google Scholar 

  • Tsilimantos D, Gorce J, Altman E (2013) Stochastic analysis of energy savings with sleep mode in OFDMA wireless networks. In: Proceedings of the 2013 IEEE International Conference on Computer Communications (INFOCOM’ 2013) 1097–1105

  • Wu J, Huang G (2010) Simulation study based on QoS schemes for IEEE 802.11.In: Proceedings of the 2010 International Conference on Advanced Computer Theory and Engineering (ICACTE’2010), 534–538

  • Ye W, Heidemann H, Estrin D (2002) An energy-efficiency MAC protocol for wireless sensor network. In: Proceedings of the 2002 IEEE International Conference on Computer Communications (INFOCOM’ 2002)1576–1576

  • Zhao D, Li B, Zheng S (1997) Study of a polling systems with limited service. J Electron 19(1):44–49 (Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Science Foundation of China (No. 61463051, No.61761045, No.61463049 and No.61461054), and the National Science Foundation of Yunnan Province (No.2017FB100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wen-Hua.

Appendix: stepwise derivation of Lemma 1

Appendix: stepwise derivation of Lemma 1

In this section we use the definition of \({{\text{G}}_i}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)\) discussed in Sect. 3.2.3 to get \({{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right),~\) the generation function of STA i at the time tn+1.

\({{\text{G}}_i}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)\) is defined as follow,

$${{\text{G}}_i}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)=\mathop \sum \limits_{{{x_1}=0}}^{\infty } \mathop \sum \limits_{{{x_2}=0}}^{\infty } \cdots \mathop \sum \limits_{{{x_i}=0}}^{\infty } \cdots \mathop \sum \limits_{{{x_N}=0}}^{\infty } z_{1}^{{{x_1}}}z_{2}^{{{x_2}}} \cdots z_{i}^{{{x_i}}} \cdots z_{N}^{{{x_N}}}{\pi _i}\left( {{x_1}, \cdots ,{x_i}, \cdots ,{x_N}} \right)$$
$$i=1,2, \cdots ,N$$

As \({\pi _i}\left( {{x_1}, \cdots ,{x_i}, \cdots ,{x_N}} \right)=\mathop {\lim }\nolimits_{{n \to \infty }} {\mathbb{P}}\left[ {{\xi _j}\left( n \right)={x_j};\, j=1,2, \cdots ,N} \right]\) is the stationary distribution of the system queue length at the polling time of STA i. We have

$${{\text{G}}_i}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)=\mathop {\lim }\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\xi _j}\left( n \right)}}} \right]$$

By analogy, we could calculate \({{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right),~\)the generation function of STA i at the time tn+1 as follow:

$${{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)=\mathop {\lim }\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right]$$
(24)

Note here \({\xi _j}\left( {n+1} \right)\) is conditional in PGP, so we rewrite (24) in a conditional probability form following

$${\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right]={\mathbb{E}}\left[ {{\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} \left. {z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right|{\xi _j}\left( n \right)} \right]} \right]=\mathop \sum \limits_{{k=0}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} \left. {z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\}$$
(25)

Take (3) into (25). As the timing variables for AP switch from each STA to the next are independent of each other, the \({{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)\) can be expressed as follow:

$${{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)=\mathop {\lim }\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right]$$
$$=\mathop {\lim }\limits_{{n \to \infty }} \mathop \sum \limits_{{k=0}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} \left. {z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\}$$
$$=\mathop {\lim }\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} \left. {z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right|{\xi _j}\left( n \right)=0} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}+\mathop {\lim }\limits_{{n \to \infty }} \mathop \sum \limits_{{k=1}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} \left. {z_{j}^{{{\xi _j}\left( {n+1} \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\}$$
$$=\mathop {{\text{lim}}}\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\mu _j}\left( {{u_i}} \right)}}} \right]{\mathbb{E}}\left[ {\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}z_{j}^{0}} \right|{\xi _j}\left( n \right)=0} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}+\mathop {\lim }\limits_{{n \to \infty }} \mathop \sum \limits_{{k=1}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\}$$
(26)

Considering the property of \({\left. {{{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)} \right|_{{z_i}=0}}={\mathbb{E}}\left[ {\mathop \prod \limits_{{\begin{array}{*{20}{c}} {j=1} \\ {j \ne i} \end{array}}}^{N} z_{j}^{{{\xi _j}\left( n \right)}}\left| {{\xi _j}\left( n \right)=k} \right.} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}\), for the first part of the summation (26), we can transform it as,

$$\mathop {\lim }\limits_{{n \to \infty }} {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\mu _j}\left( {{u_i}} \right)}}} \right]{\mathbb{E}}\left[ {\mathop \prod \limits_{{\begin{array}{*{20}{c}} {j=1} \\ {j \ne i} \end{array}}}^{N} z_{j}^{{{\xi _j}\left( n \right)}}\left| {{\xi _j}\left( n \right)=k} \right.} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}$$
$$={R_i}{\left. {\left( {\mathop \prod \limits_{{j=1}}^{N} {A_j}\left( {{z_j}} \right)} \right){{\text{G}}_{i+1}}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)} \right|_{{z_i}=0}}$$
(27)

For the second part of (26), we have,

$$\mathop {\lim }\limits_{{n \to \infty }} \mathop \sum \limits_{{k=1}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\}$$
$$\mathop {=\lim }\limits_{{n \to \infty }} \mathop \sum \limits_{{k=0}}^{\infty } {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}} \right|{\xi _j}\left( n \right)=k} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=k} \right\} - ~~~~{\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}} \right|{\xi _j}\left( n \right)=0} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}$$
$$=\mathop {\lim }\limits_{{n \to \infty }} \left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} z_{j}^{{{\xi _j}\left( n \right)}}} \right] - {\mathbb{E}}\left[ {\mathop \prod \limits_{{j=1}}^{N} z_{j}^{{{\eta _j}\left( {{\nu _i}} \right)}}\mathop \prod \limits_{{j \ne i}}^{N} \left. {z_{j}^{{{\xi _j}\left( n \right)}}} \right|{\xi _j}\left( n \right)=0} \right]{\mathbb{P}}\left\{ {{\xi _j}\left( n \right)=0} \right\}$$
$$={{\text{G}}_i}\left( {{z_1}, \cdots ,{z_{i - 1}},{\text{B}}\left( {\mathop \prod \limits_{{j=1}}^{N} {{\text{A}}_j}\left( {{z_j}} \right)} \right),{z_{i+1}}, \cdots ,{z_N}} \right) - {\left. {{{\text{G}}_i}\left( {{z_1}, \cdots ,{z_i}, \cdots ,{z_N}} \right)} \right|_{{z_i}=0}}$$
(28)

Combining (27) and (28), this completes the derivation of function (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Zhi-Jun, Y., Min, H. et al. Energy-efficient analysis of an IEEE 802.11 PCF MAC protocol based on WLAN. J Ambient Intell Human Comput 10, 1727–1737 (2019). https://doi.org/10.1007/s12652-018-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-018-0684-8

Keywords

Navigation