Abstract
Visual analysis of epidemic spread data is crucial in understanding the process of epidemic transmission, tracing the source of infection, evaluating the development of epidemic, and formulating reasonable policies. However, due to limited capabilities in collecting comprehensive data on the spread of the epidemic, it remains challenging to fully and visually comprehend the spatial and temporal changes in virus transmission, which, in turn, hampers efforts in exploration of macro-level pattern analysis and validation of micro-level facts. To fill this gap, in this paper, we propose a virtual simulation and visual analysis system, named VIVIAN. The user-friendly interaction design of the system enables rapid infection traceability and accurate investigation of close contacts. Furthermore, it establishes synchronous correlations between model parameters and epidemic prevention and control measures. The system supports users in simulating the formulation of epidemic prevention and control policies and evaluating their effectiveness. The system automatically generates the movement trajectories and contact situation based user-defined thresholds, which relaxes the data challenge and scalability of the system. The system is equipped with multiple linked, intuitive, and interactive visualization charts for rapid infection traceability and accurate close contact investigation. In addition, the system supports users in formulating and evaluating of epidemic prevention and control policies. Case studies and expert interviews based on simulated data have demonstrated the effectiveness and practicality of the system, which make it, as a foundation, possible to be employed in certain scenes for epidemic prevention and controls.
Graphical abstract
Similar content being viewed by others
References
Afiq A, Zakariya M, Saad M, Nurfarzana A, Khir MHM, Fadzil A, Jale A, Gunawan W, Izuddin Z, Faizari M (2019) A review on classifying abnormal behavior in crowd scene. J Vis Commun Image Represent 58:285–303. https://doi.org/10.1016/j.jvcir.2018.11.035
Andrienko N, Andrienko G, Miksch S, Schumann H, Wrobel S (2021) A theoretical model for pattern discovery in visual analytics. Vis Inform 5(1):23–42. https://doi.org/10.1016/j.visinf.2020.12.002
Angstmann CN, Erickson AM, Henry BI, McGann AV, Murray JM, Nichols JA (2017) Fractional order compartment models. SIAM J Appl Math 77(2):430–446. https://doi.org/10.1137/16M1069249
Bartsch SM, O’Shea KJ, Ferguson MC, Bottazzi ME, Wedlock PT, Strych U, McKinnell JA, Siegmund SS, Cox SN, Hotez PJ (2020) Vaccine efficacy needed for a covid-19 coronavirus vaccine to prevent or stop an epidemic as the sole intervention. Am J Prev Med 59(4):493–503. https://doi.org/10.1016/j.amepre.2020.06.011
Baumgartl T, Petzold M, Wunderlich M, Hohn M, Archambault D, Lieser M, Dalpke A, Scheithauer S, Marschollek M, Eichel V (2020) In search of patient zero: visual analytics of pathogen transmission pathways in hospitals. IEEE Trans Vis Comput Graph 27(2):711–721. https://doi.org/10.1109/TVCG.2020.3030437
Boudaoui A, Moussa Y, Hammouch Z, Ullah S (2021) A fractional-order model describing the dynamics of the novel coronavirus (covid-19) with nonsingular kernel. Chaos Solitons Fractals 146:110859. https://doi.org/10.1016/j.chaos.2021.110859
Brockmann D, Helbing D (2013) The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164):1337–1342. https://doi.org/10.1126/science.1245200
Campillo-Funollet E, Van Yperen J, Allman P, Bell M, Beresford W, Clay J, Dorey M, Evans G, Gilchrist K, Memon A (2021) Predicting and forecasting the impact of local outbreaks of covid-19: use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity. Int J Epidemiol 50(4):1103–1113. https://doi.org/10.1093/ije/dyab106
Chen W, Huang Z, Wu F, Zhu M, Guan H, Maciejewski R (2017) Vaud: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Graph 24(9):2636–2648. https://doi.org/10.1109/TVCG.2017.2758362
Chen Y, Li Y, Feng S, Man X, Long Y (2021) Gravitational scaling analysis on spatial diffusion of covid-19 in Hubei Province, China. PLoS ONE 16(6):0252889. https://doi.org/10.1371/journal.pone.0252889
Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, Piontti A, Mu K, Rossi L, Sun K (2020) The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 368(6489):395–400. https://doi.org/10.1126/science.aba9757
Corberán-Vallet A, Lawson AB (2014) Prospective analysis of infectious disease surveillance data using syndromic information. Stat Methods Med Res 23(6):572–590. https://doi.org/10.1177/0962280214527385
Dobie AP (2022) Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size. Ecol Complex 50:101004. https://doi.org/10.1016/j.ecocom.2022.101004
El-Khatib Z, Taus K, Richter L, Allerberger F, Schmid D (2019) A syndrome-based surveillance system for infectious diseases among asylum seekers in Austrian reception centers, 2015–2018: analysis of reported data. JMIR Public Health Surveill 5(1):11465. https://doi.org/10.2196/11465
Fang L-Q, De Vlas SJ, Feng D, Liang S, Xu Y-F, Zhou J-P, Richardus JH, Cao W-C (2009) Geographical spread of SARS in mainland China. Trop Med Int Health 14:14–20. https://doi.org/10.1111/j.1365-3156.2008.02189.x
Han D, Pan J, Pan R, Zhou D, Cao N, He J, Xu M, Chen W (2021) iNet: visual analysis of irregular transition in multivariate dynamic networks. Front Comput Sci 16:1–16. https://doi.org/10.1007/s11704-020-0013-1
He S, Peng Y, Sun K (2020) SEIR modeling of the covid-19 and its dynamics. Nonlinear Dyn 101:1667–1680. https://doi.org/10.1007/s11071-020-05743-y
Huang Z, Zhao Y, Chen W, Gao S, Yu K, Xu W, Tang M, Zhu M, Xu M (2019) A natural-language-based visual query approach of uncertain human trajectories. IEEE Trans Vis Comput Graph 26(1):1256–1266. https://doi.org/10.1109/TVCG.2019.2934671
Kang H, Sun M, Yu Y, Fu X, Bao B (2018) Spreading dynamics of an SEIR model with delay on scale-free networks. IEEE Trans Netw Sci Eng 7(1):489–496. https://doi.org/10.1109/TNSE.2018.2860988
Kröger M, Schlickeiser R (2020) Analytical solution of the sir-model for the temporal evolution of epidemics. Part A: time-independent reproduction factor. J Phys A Math Theor 53(50):505–601. https://doi.org/10.1088/1751-8121/abc65d
Kumar A, Choi T-M, Wamba SF, Gupta S, Tan KH (2021) Infection vulnerability stratification risk modelling of covid-19 data: a deterministic SEIR epidemic model analysis. Ann Oper Res. https://doi.org/10.1007/s10479-021-04091-3
Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, Wesolowski A, Santillana M, Zhang C, Du X (2020) Effect of non-pharmaceutical interventions to contain covid-19 in China. Nature 585(7825):410–413. https://doi.org/10.1038/s41586-020-2293-x
Merler S, Ajelli M, Fumanelli L, Gomes MF, Piontti AP, Rossi L, Chao DL, Longini IM, Halloran ME, Vespignani A (2015) Spatiotemporal spread of the 2014 outbreak of ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect Dis 15(2):204–211. https://doi.org/10.1016/S1473-3099(14)71074-6
Mukandavire Z, Nyabadza F, Malunguza NJ, Cuadros DF, Shiri T, Musuka G (2020) Quantifying early covid-19 outbreak transmission in south Africa and exploring vaccine efficacy scenarios. PloS ONE 15(7):0236003. https://doi.org/10.1371/journal.pone.0236003
Naseem U, Razzak I, Khushi M, Eklund PW, Kim J (2021) Covidsenti: a large-scale benchmark twitter data set for covid-19 sentiment analysis. IEEE Trans Comput Soc Syst 8(4):1003–1015. https://doi.org/10.1109/TCSS.2021.3051189
Nguyen BT, Nguyen NV, Nguyen NT, Tran MHT (2017) A potential approach for mobility prediction using GPS data. In: 2017 seventh international conference on information science and technology (ICIST), pp 45–50. IEEE, Da Nang, Vietnam. https://doi.org/10.1109/ICIST.2017.7926813
Nie Q, Liu Y, Zhang D, Jiang H (2021) Dynamical SEIR model with information entropy using covid-19 as a case study. IEEE Trans Comput Soc Syst 8(4):946–954. https://doi.org/10.1109/TCSS.2020.3046712
Pak TR, Kasarskis A (2015) How next-generation sequencing and multiscale data analysis will transform infectious disease management. Clin Infect Dis 61(11):1695–1702. https://doi.org/10.1093/cid/civ670
Peng Y, Fan X, Chen R, Yu Z, Liu S, Chen Y, Zhao Y, Zhou F (2022) Visual abstraction of dynamic network via improved multi-class blue noise sampling. Front Comput Sci 17(1):171701. https://doi.org/10.1007/s11704-021-0609-0
Polonsky JA, Baidjoe A, Kamvar ZN, Cori A, Durski K, Edmunds WJ, Eggo RM, Funk S, Kaiser L, Keating P (2019) Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos Trans R Soc B 374(1776):20180276. https://doi.org/10.1098/rstb.2018.0276
Poucin G, Farooq B, Patterson Z (2018) Activity patterns mining in WI-FI access point logs. Comput Environ Urban Syst 67:55–67. https://doi.org/10.1016/j.compenvurbsys.2017.09.004
Ren J, Yan Y, Zhao H, Ma P, Zabalza J, Hussain Z, Luo S, Dai Q, Zhao S, Sheikh A (2020) A novel intelligent computational approach to model epidemiological trends and assess the impact of non-pharmacological interventions for covid-19. IEEE J Biomed Health Inform 24(12):3551–3563. https://doi.org/10.1109/JBHI.2020.3027987
Rocklöv J, Sjödin H (2020) High population densities catalyse the spread of covid-19. J Travel Med 27(3):038. https://doi.org/10.1093/jtm/taaa038
Röst G (2008) SEIR epidemiological model with varying infectivity and infinite delay. Math Biosci Eng 5(2):389–402
Santos Gomes DC, Oliveira Serra GL (2021) Machine learning model for computational tracking and forecasting the covid-19 dynamic propagation. IEEE J Biomed Health Inform 25(3):615–622. https://doi.org/10.1109/JBHI.2021.3052134
Silva PC, Batista PV, Lima HS, Alves MA, Guimarães FG, Silva RC (2020) Covid-abs: an agent-based model of covid-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos Solitons Fractals 139:110088. https://doi.org/10.1016/j.chaos.2020.110088
Simpson RB, Babool S, Tarnas MC, Kaminski PM, Hartwick MA, Naumova EN (2022) Dynamic mapping of cholera outbreak during the Vemeni civil war, 2016–2019. J Public Health Policy 43(2):185–202. https://doi.org/10.1057/s41271-022-00345-x
Sullivan PS, Woodyatt C, Koski C, Pembleton E, McGuinness P, Taussig J, Ricca A, Luisi N, Mokotoff E, Benbow N (2020) A data visualization and dissemination resource to support HIV prevention and care at the local level: analysis and uses of the AIDSVU public data resource. J Med Internet Res 22(10):23173. https://doi.org/10.2196/23173
Talavera F, Lera I, Guerrero C (2022) Analysis of wireless network access logs for a hierarchical characterization of user mobility. J King Saud Univ-Comput Inf Sci 34(6):2471–2487. https://doi.org/10.1016/j.jksuci.2022.03.014
Tian H, Liu Y, Li Y, Wu C-H, Chen B, Kraemer MU, Li B, Cai J, Xu B, Yang Q (2020) An investigation of transmission control measures during the first 50 days of the covid-19 epidemic in China. Science 368(6491):638–642. https://doi.org/10.1126/science.abb6105
Wang X, Wu Z, Huang W, Wei Y, Huang Z, Xu M, Chen W (2023) VIS+ AI: integrating visualization with artificial intelligence for efficient data analysis. Front Comput Sci 17(6):1–12. https://doi.org/10.1007/s11704-023-2691-y
Wang F, Chen W, Wu F, Zhao Y, Hong H, Gu T, Wang L, Liang R, Bao H (2014) A visual reasoning approach for data-driven transport assessment on urban roads. In: 2014 IEEE conference on visual analytics science and technology (VAST), pp 103–112. IEEE, Paris, France. https://doi.org/10.1109/VAST.2014.7042486
Wang X, Chen W, Xia J, Chen Z, Xu D, Wu X, Xu M, Schreck T (2020) Conceptexplorer: visual analysis of concept drifts in multi-source time-series data. In: IEEE conference on visual analytics science and technology (VAST), pp 1–11. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/VAST50239.2020.00006
Wang J, Tang K, Feng K, Lv W (2020) High temperature and high humidity reduce the transmission of covid-19. Available at SSRN 3551767, 2020 https://doi.org/10.2139/ssrn.3551767
Yang C, Zhang Z, Fan Z, Jiang R, Chen Q, Song X, Shibasaki R (2022) Epimob: interactive visual analytics of citywide human mobility restrictions for epidemic control. IEEE Trans Vis Comput Graph. https://doi.org/10.1109/TVCG.2022.3165385
Younsi F-Z, Bounnekar A, Hamdadou D, Boussaid O (2015) SEIR-SW, simulation model of influenza spread based on the small world network. Tsinghua Sci Technol 20(5):460–473. https://doi.org/10.1109/TST.2015.7297745
Zhao Y, Ge L, Xie H, Bai G, Zhang Z, Wei Q, Lin Y, Liu Y, Zhou F (2022) ASTF: visual abstractions of time-varying patterns in radio signals. IEEE Trans Vis Comput Graph 29(1):214–224. https://doi.org/10.1109/TVCG.2022.3209469
Zhao Y, Lv S, Long W, Fan Y, Yuan J, Jiang H, Zhou F (2023) Malicious webshell family dataset for webshell multi-classification research. Vis Inform. https://doi.org/10.1016/j.visinf.2023.06.008
Zhou Z, Meng L, Tang C, Zhao Y, Guo Z, Hu M, Chen W (2018) Visual abstraction of large scale geospatial origin-destination movement data. IEEE Trans Vis Comput Graph 25(1):43–53. https://doi.org/10.1109/TVCG.2018.2864503
Zhou Z, Ma Y, Zhang Y, Liu Y, Liu Y, Zhang L, Deng S (2021) Context-aware visual abstraction of crowded parallel coordinates. Neurocomputing 459:23–34. https://doi.org/10.1016/j.neucom.2021.05.005
Zhou Z, Sun L, Wang H, Yu W, Liu Y, Zhang X, Wang Y, Chen W (2022) iMGC: Interactive multiple graph clustering with constrained Laplacian rank. IEEE Trans Hum–Mach Syst 53(2):427–437. https://doi.org/10.1109/THMS.2022.3227181
Zhou Z, Zheng F, Wen J, Chen Y, Li X, Liu Y, Wang Y, Chen W (2023) A user-driven sampling model for large-scale geographical point data visualization via convolutional neural networks. IEEE Trans Hum–Mach Syst 53(5):885–894. https://doi.org/10.1109/THMS.2023.3296692
Zhou Z, Zhang X, Yang Z, Chen Y, Liu Y, Wen J, Chen B, Zhao Y, Chen W (2020) Visual abstraction of geographical point data with spatial autocorrelations. In: IEEE conference on visual analytics science and technology (VAST), pp 60–71. IEEE, Salt Lake City, UT, USA. https://doi.org/10.1109/VAST50239.2020.00011
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China (62277013, 62177040, U22A2032), National Key R &D Program of China (Grant No. 2022YFE0137800), National Statistical Science Research Project (2022LY099), Zhejiang Provincial Science and Technology Program in China (No. 2021C03137), Zhejiang Provincial Science and Technology Plan Project (2023C01120), and Public Welfare Plan Research Project of Zhejiang Provincial Science and Technology Department (LTGG23H260003, LGF22F020034).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, G., Chang, B., Zhao, J. et al. VIVIAN: virtual simulation and visual analysis of epidemic spread data. J Vis 27, 677–694 (2024). https://doi.org/10.1007/s12650-024-00990-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-024-00990-2