Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Interactive optimization of relation extraction via knowledge graph representation learning

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Relation extraction is a vital task in constructing large-scale knowledge graphs, aiming to identify factual relations between entities from plain texts and generate triples. However, it is inevitable that a large amount of noise will be generated and should be given special attention; otherwise, they will seriously downgrade the performance of knowledge reasoning. In this paper, we propose a visual analytics system that facilitates automatic extraction and interactive optimization of relations between entities, enabling users to refine these extraction results with low confidence. First, a triple-based embedding method is designed to provide an overview of the triples by capturing the semantic similarity between entities and relations. Then, the contextual information in the embedding space is utilized to evaluate the correctness of triples and infer more probable relations for correction. Finally, a visual analysis system integrating the above method and multiple coordinated views is developed, enabling the higher-quality data corrected by users to assist in achieving iterative optimization of the relation extraction model in an interpretable way. Case studies based on real-world datasets and expert interviews further demonstrate the effectiveness of the system for effective analysis and exploration of the knowledge graph relation extraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O (2013) Translating embeddings for modeling multi-relational data. In: Advances in neural information processing systems 26

  • Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T (2010) Toward an architecture for never-ending language learning, vol 3

  • Cashman D, Xu S, Das S, Heimerl F, Liu C, Humayoun S, Gleicher M, Endert A, Chang R (2020) Cava: a visual analytics system for exploratory columnar data augmentation using knowledge graphs. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2020.3030443

    Article  Google Scholar 

  • Chen W, Huang Z, Wu F, Zhu M, Maciejewski R (2018) VAUD: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Vis Comput Gr 99:2636–2648

    Article  Google Scholar 

  • Dang T, Franz N, Ludäscher B, Forbes A (2015) Provenancematrix: a visualization tool for multi-taxonomy alignments. In: CEUR workshop proceedings vol 1456, pp 13–24

  • Fionda V, Pirrò G (2020) Learning triple embeddings from knowledge graphs. In: proceedings of the AAAI conference on artificial intelligence 34, pp 3874–3881

  • Han D, Pan J, Rusheng P, Zhou D, Cao N, He J, Xu M, Chen W (2022) iNet: visual analysis of irregular transition in multivariate dynamic networks. Front Comput Sci. https://doi.org/10.1007/s11704-020-0013-1

    Article  Google Scholar 

  • Hendrickx I, Kim S, Kozareva Z, Nakov P, Padó S, Pennacchiotti M, Romano L, Szpakowicz S (2010) Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals, pp 33–38

  • Henry Riche N, Fekete J-D, McGuffin M (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Gr 13:1302–9. https://doi.org/10.1109/TVCG.2007.70582

    Article  Google Scholar 

  • Ji G, He S, Xu L, Liu K, Zhao J (2015) Knowledge graph embedding via dynamic mapping matrix, pp 687–696. https://doi.org/10.3115/v1/P15-1067

  • Kalinowski A, An Y (2022) Repurposing knowledge graph embeddings for triple representation via weak supervision. In: 2022 international conference on intelligent data science technologies and applications (IDSTA), IEEE, pp 129–137

  • Kratzwald B, Kunpeng G, Feuerriegel S, Diefenbach D (2020) Intkb: a verifiable interactive framework for knowledge base completion. https://doi.org/10.18653/v1/2020.coling-main.490

  • Li H, Wang Y, Zhang S, Song Y, Qu H (2021) KG4Vis: a knowledge graph-based approach for visualization recommendation. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2021.3114863

    Article  Google Scholar 

  • Li Z, Wang X, Yang W, Wu J, Zhang Z, Liu Z, Sun M, Zhang H, Liu S (2022) A unified understanding of deep nlp models for text classification. IEEE Trans Vis Comput Gr 28(12):4980–4994. https://doi.org/10.1109/TVCG.2022.3184186

    Article  Google Scholar 

  • Lin Y, Liu Z, Sun M, Liu Y, Zhu X (2015) Learning entity and relation embeddings for knowledge graph completion. Proc AAAI 29:2181–2187. https://doi.org/10.1609/aaai.v29i1.9491

    Article  Google Scholar 

  • Liu S, Wang X, Chen J, Zhu J, Guo B (2015) Topicpanorama: a full picture of relevant topics. In: 2014 IEEE Conference on Visual Analytics Science and Technology, VAST 2014 - Proceedings 2014, pp 183–192 https://doi.org/10.1109/VAST.2014.7042494

  • Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Gr 23(1):91–100

    Article  Google Scholar 

  • Lohfink A-P, Duque Anton S, Leitte H, Garth C (2021) Knowledge rocks: adding knowledge assistance to visualization systems. IEEE Trans Vis Comput Gr 28:1117

    Article  Google Scholar 

  • Ma C, Yang C, Yang F, Zhuang Y, Zhang Z, Jia H, Xie X (2018) Trajectory factory: tracklet cleaving and re-connection by deep siamese bi-gru for multiple object tracking. In: 2018 IEEE international conference on multimedia and Expo (ICME), pp 1–6. https://doi.org/10.1109/ICME.2018.8486454

  • Miwa M, Bansal M (2016) End-to-end relation extraction using lstms on sequences and tree structures, pp 1105–1116. https://doi.org/10.18653/v1/P16-1105

  • Nickel M, Tresp V, Kriegel H-P et al (2011) A three-way model for collective learning on multi-relational data. In: Icml 11, pp 3104482–3104584

  • Nickel M, Rosasco L, Poggio T (2015) Holographic embeddings of knowledge graphs. In: proceedings of the AAAI conference on artificial intelligence 30https://doi.org/10.1609/aaai.v30i1.10314

  • Peng Y, Fan X, Chen R, Yu Z, Liu S, Chen Y, Ying Z, Zhou F (2023) Visual abstraction of dynamic network via improved multi-class blue noise sampling. Front Comput Sci. https://doi.org/10.1007/s11704-021-0609-0

    Article  Google Scholar 

  • Schutz A, Buitelaar P (2005) Relext: a tool for relation extraction from text in ontology extension, pp 593–606. https://doi.org/10.1007/11574620_43

  • Sheng S, Zhou P, Wu X (2019) CEPV: a tree structure information extraction and visualization tool for big knowledge graph, pp 221–228. https://doi.org/10.1109/ICBK.2019.00037

  • Shinyama Y, Sekine S (2006). Preemptive information extraction using unrestricted relation discovery. https://doi.org/10.3115/1220835.1220874

  • Sinclair G, Thillainadarajah I, Meyer B, Samano V, Sivasupramaniam S, Adams L, Willighagen E, Richard A, Walker M, Williams A (2022) Wikipedia on the comptox chemicals dashboard: connecting resources to enrich public chemical data. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.2c00886

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun K, Liu Y, Guo Z, Wang C (2016) EduVis: visualization for education knowledge graph based on web data, pp 138–139. https://doi.org/10.1145/2968220.2968227

  • Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G (2016) Complex embeddings for simple link prediction. In: international conference on machine learning, PMLR, pp 2071–2080

  • Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embedding by translating on hyperplanes. In: proceedings of the AAAI conference on artificial intelligence, 28.https://doi.org/10.1609/aaai.v28i1.8870

  • Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743

    Article  Google Scholar 

  • Wang X, Wu Z, Huang W, Wei Y, Huang Z, Xu M, Chen W (2023) VIS+AI: integrating visualization with artificial intelligence for efficient data analysis. Front Comput Sci 17(6):1

    Article  Google Scholar 

  • Weihua Y, Dong X (2021) Visual analysis of industrial knowledge graph research based on citespace, pp 297–300. https://doi.org/10.1109/CMMNO53328.2021.9467534

  • Xi J, Ye L, Huang Q, Li X (2021) Tolerating data missing in breast cancer diagnosis from clinical ultrasound reports via knowledge graph inference, pp 3756–3764. https://doi.org/10.1145/3447548.3467106

  • Xia J-z, Zhang Y-h, Ye H, Wang Y, Jiang G, Zhao Y, Xie C, Kui X-y, Liao S-h, Wang W-p (2020) Supoolvisor: a visual analytics system for mining pool surveillance. Front Inf Technol Electron Eng 21(4):507–523. https://doi.org/10.1631/FITEE.1900532

    Article  Google Scholar 

  • Xia J, Huang L, Lin W, Zhao X, Wu J, Chen Y, Zhao Y, Chen W (2022) Interactive visual cluster analysis by contrastive dimensionality reduction. IEEE Trans Vis Comput Gr 29(1):734–744

    Google Scholar 

  • Xia J, Huang L, Lin W, Zhao X, Wu J, Chen Y, Zhao Y, Chen W (2023) Interactive visual cluster analysis by contrastive dimensionality reduction. IEEE Trans Vis Comput Gr 29(1):734–744. https://doi.org/10.1109/TVCG.2022.3209423

    Article  Google Scholar 

  • Xiao J, Zhou Z (2020) Chapter-level entity relationship extraction method based on joint learning, pp 75–78. https://doi.org/10.1109/IHMSC49165.2020.00025

  • Xiong C, Power R, Callan J (2017) Explicit semantic ranking for academic search via knowledge graph embedding, pp 1271–1279. https://doi.org/10.1145/3038912.3052558

  • Xu K, Feng Y, Huang S, Zhao D (2015) Semantic relation classification via convolutional neural networks with simple negative sampling https://doi.org/10.18653/v1/D15-1062

  • Yang B, Yih W-t, He X, Gao J, Deng L (2014) Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575

  • Yang W, Liu M, Wang Z, Liu S (2024) Foundation models meet visualizations: challenges and opportunities. Computational Visual Media. arxiv: 2310.05771

  • Ying Z, Luhao G, Huixuan X, Bai G, Zhang Z, Wei Q, Lin Y, Liu Y, Zhou F (2022) Astf: visual abstractions of time-varying patterns in radio signals. IEEE Trans Vis Comput Gr. https://doi.org/10.48550/arXiv.2209.15223d

    Article  Google Scholar 

  • Yuyu Z, Dai H, Kozareva Z, Smola A, Song L (2017) Variational reasoning for question answering with knowledge graph. In: proceedings of the AAAI conference on artificial intelligence, 32

  • Zeng D, Liu K, Lai S, Zhou G, Zhao J (2014) Relation classification via convolutional deep neural network. In: proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 2335–2344

  • Zhang Y, Qi P, Manning C (2018) Graph convolution over pruned dependency trees improves relation extraction, pp 2205–2215. https://doi.org/10.18653/v1/D18-1244

  • Zhang N, Deng S, Sun Z, Wang G, Chen X, Zhang W, Chen H (2019) Long-tail relation extraction via knowledge graph embeddings and graph convolution networks

  • Zhang Z, Cai J, Zhang Y, Wang J (2020) Learning hierarchy-aware knowledge graph embeddings for link prediction. In: proceedings of the AAAI conference on artificial intelligence 34, pp 3065–3072

  • Zheng S, Wang F, Bao H, Hao Y, Zhou P, Xu B (2017) Joint extraction of entities and relations based on a novel tagging scheme

  • Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B (2016) Attention-based bidirectional long short-term memory networks for relation classification, pp 207–212. https://doi.org/10.18653/v1/P16-2034

  • Zhou Z, Shi C, Shen X, Cai L, Wang H, Liu Y, Ying Z, Chen W (2020a) Context-aware sampling of large networks via graph representation learning. IEEE Trans Vis Comput Gr. https://doi.org/10.1109/TVCG.2020.3030440

    Article  Google Scholar 

  • Zhou Z, Zhang X, Yang Z, Chen Y, Liu Y, Wen J, Chen B, Ying Z, Chen W (2020b) Visual abstraction of geographical point data with spatial autocorrelations, pp 60–71. https://doi.org/10.1109/VAST50239.2020.00011

  • Zhou Z, Sun L, Yu W, Liu Y, Xiang Z, Wang Y, Chen W (2022) iMGC: interactive multiple graph clustering with constrained Laplacian rank. IEEE Trans Hum Mach Syst. https://doi.org/10.1109/THMS.2022.3227181

    Article  Google Scholar 

  • Zhou Z, Zheng F, Wen J, Chen Y, Li X, Liu Y, Wang Y, Chen W (2023) A user-driven sampling model for large-scale geographical point data visualization via convolutional neural networks. IEEE Trans Hum Mach Syst. https://doi.org/10.1109/THMS.2023.3296692

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (U22A2032), National Statistical Science Research Project (No.2022LY099), Zhejiang Laboratory Open Research Project (No.K2022KG0AB01), Public Welfare Plan Research Project of Zhejiang Provincial Science and Technology Department (No. LTGG23H260003), Zhejiang Provincial Natural Science Foundation of China under Grant (No.LTGG24F020006), Open Project Program of the State Key Laboratory of CAD&CG of Zhejiang University (No.A2301), and Zhejiang Statistical Science Research Project. Finally, we would like to express our sincere gratitude to Zhengkai Xiao, Ke Lu, and Zhenyi Yang for their invaluable assistance in this paper, as they have offered us numerous insightful opinions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwei Meng or Zhiguang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 13980 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ma, Y., Zhang, Y. et al. Interactive optimization of relation extraction via knowledge graph representation learning. J Vis 27, 197–213 (2024). https://doi.org/10.1007/s12650-024-00955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-024-00955-5

Keywords

Navigation