Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Visual exploration of latent ranking evolutions in time series

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Rankings are everywhere in the world and they change constantly. Detecting and analyzing ranking changes in a ranked list is of great importance for recommendation and information retrieval tasks. Common to existing approaches is that the latent correlations and trends of ranked lists are not taken into account. This paper introduces RankEvo, an integration of rank structuring and visualization techniques, for detecting and analyzing latent evolutions in ranking time series. We characterize the ranking changes by computing the similarities among the time series of ranked items and organizing similar items into itemsets, and further forming ranking evolutions. The integrated RankEvo system provides visualization and intuitive interactions for exploring correlated itemsets, concurrent ranking evolutions, as well as outlier items of ranked lists. The system also employs additional information windows on demand for evolution elaboration and verification. Case studies are conducted to demonstrate the effectiveness and usability of the RankEvo system in assisting users to understand ranking changes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Fortune 500 visualization. http://in.somniac.me/2010/01/fortune-500-visualization/. Accessed: 2015-04-11.

  2. Wikipedia Top 50. http://www.chrisharrison.net/index.php/Visualizations/WikiTop50. Accessed: 2015-04-11.

  3. Fortune 500. http://fathom.info/fortune500/. Accessed: 2015-04-11.

  4. http://dumps.wikimedia.org/other/pagecounts-raw/.

  5. http://fortune.com/fortune500/.

  6. http://data.worldbank.org/indicator/SP.DYN.LE00.IN.

References

  • Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of Time-Oriented Data. Springer

  • Alvo M, Cabilio P (1985) Rank correlation methods for missing data. Can J Stat 23(4):345–358

    Article  MathSciNet  MATH  Google Scholar 

  • Batty M (2006) Rank clocks. Nature 444:592–597

    Article  Google Scholar 

  • Cao N, Lin YR, Sun X, Lazer D, Liu S, Qu H (2012) Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Trans Vis Comput Graph 18(12):2649–2658

    Article  Google Scholar 

  • Critchlow DE (1985) Metric Methods for Analyzing Partially Ranked Data, vol 34. Springer

  • Cui W, Liu S, Tan L, Shi C, Song Y, Gao Z, Qu H, Tong X (2011) Textflow: Towards better understanding of evolving topics in text. IEEE Trans Vis Comput Graph 17(12):2412–2421

    Article  Google Scholar 

  • Hochheiser H, Shneiderman B (2004) Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Inf Vis 3(1):1–18

    Article  Google Scholar 

  • Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr, Corbaz

  • Kidwell P, Lebanon G, Cleveland W (2008) Visualizing incomplete and partially ranked data. IEEE Tran Vis Comput Graph 14(6):1356–1363

    Article  Google Scholar 

  • Lu M, Wang Z, Yuan X (2015) Trajrank: Exploring travel behaviour on a route by trajectory ranking. In: Proceedings of the IEEE Pacific Visualization Symposium, IEEE

  • Marden JI (1995) Analyzing and modeling rank data. Chapman&Hall, London

  • McLachlan P, Munzner T, Koutsofios E, North S (2008) Liverac: interactive visual exploration of system management time-series data. In: Proceedings of the 26th SIGCHI conference on Human factors in computing systems, ACM, pp 1483–1492

  • Ogawa M, Ma KL (2010) Software evolution storylines. In: Proceedings of the 5th international symposium on Software visualization, ACM, pp 35–42

  • Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B (1996) Lifelines: visualizing personal histories. In: Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, pp 221–227

  • Shi C, Cui W, Liu S, Xu P, Chen W, Qu H (2012) Rankexplorer: Visualization of ranking changes in large time series data. IEEE Trans Vis Comput Graph 2669–2678

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, IEEE, pp 336–343

  • Sun M, Lebanon G, Collins-Thompson K (2010) Visualizing differences in web search algorithms using the expected weighted hoeffding distance. In: Proceedings of the 19th international conference on World Wide Web. NY, pp 931–940

  • Tominski C, Abello J, Schumann H (2004) Axes-based visualizations with radial layouts. In: Proceedings of the 2004 ACM symposium on Applied computing, ACM, pp 1242–1247

  • Tufte ER (1986) The visual display of quantitative information. Graphics Press, Cheshire

    Google Scholar 

  • Vintsyuk TK (1968) Speech discrimination by dynamic programming. Cybern Syst Anal 4(1):52–57

    Article  MathSciNet  Google Scholar 

  • Ware C (2012) Information visualization: perception for design, 3rd edn. Elsevier

  • Weber M, Alexa M, Müller W (2001) Visualizing time-series on spirals. In: Proceedings of the IEEE Symposium on Information Visualization, p 7

  • Wei J, Shen Z, Sundaresanl N, Ma KL (2012) Visual cluster exploration of web clickstream data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, IEEE, pp 3–12

  • Wijk JJV, Selow ERV (1999) Cluster and calendar based visualization of time series data. In: Proceedings of the IEEE Symposium on Information Visualization, IEEE, pp 4–9

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (61202279) and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ12F02003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu.

Additional information

Supported by National 973 Program of China (2015CB352503), Major Program of National Natural Science Foundation of China (61232012), National Natural Science Foundation of China (61422211, 61202279), Zhejiang Provincial Natural Science Foundation of China (LR13F020001, LQ12F02003) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Xia, J., Guo, F. et al. Visual exploration of latent ranking evolutions in time series. J Vis 19, 783–795 (2016). https://doi.org/10.1007/s12650-016-0349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-016-0349-7

Keywords

Navigation