Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Effects of Biochar Derived from Coconut Shell on Soil Hydraulic Properties under Salt Stress in Roadside Bioretention

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Performance of roadside bioretention is negatively affected by snow-melting water mixed with deicing salts in winters. This study intends to explore how coconut-shell-biochar changes soil hydraulic properties under drying-wetting cycles (especially using salt solution). Four types of soils were prepared, i.e., bare soil subjected to pure water (BS-W), bare soil subjected to salt solution (BS-S), biochar-amended soil subjected to pure water (AS-W) and biochar-amended soil subjected salt solution (AS-S). During drying-wetting cycles, crack propagation, soil water characteristic curve and unsaturated permeability were measured. After cyclic drying-wetting, crack intensity factors of BS-W, BS-S, AS-W and AS-S are 4.3%, 8.3%, 2.4% and 3%, respectively. Salts decrease water-holding capacity at low suction, but improve water-retention capability at high suction. Biochar improves soil water-holding capacity, especially for salt-treated soils. After cyclic drying-wetting, saturated water contents of BS-W, BS-S, AS-W and AS-S are 0.502, 0.464, 0.505 and 0.491, respectively. Due to presence of desiccation crack, saturated permeability is less than maximal unsaturated permeability. Maximal hydraulic conductivities of BS-W, BS-S, AS-W and AS-S are 1.2 × 10–3, 2.9 × 10–3, 1.5 × 10–3 and 1.9 × 10–3 cm/s, respectively. Based on diffuse double layer theory, increased salt concentration reduces distance between clay particles, which causes contraction of clay particle aggregate (CPA). Further, individual CPA separates itself from surrounding sand particles and CPAs, therefore micro-cracks form. Biochar absorbs salts and thus mitigates salt-induced harms on soil structure. In order to improve serviceability of bioretention subjected to snow-melting salt stress, contributions of coconut-shell-biochar are highlighted in this study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, H., Jia, Y., Niu, C.: "Sponge city’’ concept helps solve China’s urban water problems. Environ. Earth Sci. (2017). https://doi.org/10.1007/s12665-017-6652-3

    Article  Google Scholar 

  2. Chan, F.K.S., Griffiths, J.A., Higgitt, D., Xu, S.Y., Zhu, F.F., Tang, Y.T., Xu, Y.Y., Thorne, C.R.: “Sponge City” in China-a breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778 (2018). https://doi.org/10.1016/j.landusepol.2018.03.005

    Article  Google Scholar 

  3. Jiang, Y., Zevenbergen, C., Ma, Y.: Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 80, 132–143 (2018). https://doi.org/10.1016/j.envsci.2017.11.016

    Article  Google Scholar 

  4. He, B.J., Zhu, J., Zhao, D.X., Gou, Z.H., Qi, J.D., Wang, J.S.: Co-benefits approach: opportunities for implementing sponge city and urban heat island mitigation. Land Use Policy 86, 147–157 (2019). https://doi.org/10.1016/j.landusepol.2019.05.003

    Article  Google Scholar 

  5. Chui, T.F.M., Liu, X., Zhan, W.: Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J. Hydrol. 533, 353–364 (2016). https://doi.org/10.1016/j.jhydrol.2015.12.011

    Article  Google Scholar 

  6. Wu, X.S., Wang, Z.L., Guo, S.L., Liao, W.L., Zeng, Z.Y., Chen, X.H.: Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: a case study in Dongguan City. China. J. Hydrol. 547, 428–442 (2017). https://doi.org/10.1016/j.jhydrol.2017.02.020

    Article  Google Scholar 

  7. Li, Q., Wang, F., Yu, Y., Huang, Z.C., Li, M.T., Guan, Y.T.: Comprehensive performance evaluation of LID practices for the sponge city construction: a case study in Guangxi. China. J. Environ. Manage. 231, 10–20 (2019). https://doi.org/10.1016/j.jenvman.2018.10.024

    Article  Google Scholar 

  8. Wong, J.K.W., Lau, L.S.: From the “urban heat island” to the “green island”? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat Int. 39, 25–35 (2013). https://doi.org/10.1016/j.habitatint.2012.10.005

    Article  Google Scholar 

  9. Muthanna, T.M., Viklander, M., Gjesdahl, N., Thorolfsson, S.T.: Heavy metal removal in cold climate bioretention. Water Air Soil Poll. 183, 391–402 (2007). https://doi.org/10.1007/s11270-007-9387-z

    Article  Google Scholar 

  10. Roy-Poirier, A., Champagne, P., Filion, Y.: Review of bioretention system research and design: past, present, and future. J. Environ. Eng. 136, 878–889 (2010). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000227

    Article  Google Scholar 

  11. Cording, A., Hurley, S., Whitney, D.: Monitoring methods and designs for evaluating bioretention performance. J. Environ. Eng. 143, 05017006 (2017). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001276

    Article  Google Scholar 

  12. Shrestha, P., Hurley, S.E., Wemple, B.C.: Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 112, 116–131 (2018). https://doi.org/10.1016/j.ecoleng.2017.12.004

    Article  Google Scholar 

  13. Muthanna, T.M., Vikolander, M., Blecken, G., Thorolfsson, S.T.: Snowmelt pollutant removal in bioretention areas. Water Res. 41, 4061–4072 (2007). https://doi.org/10.1016/j.watres.2007.05.040

    Article  Google Scholar 

  14. French, H.K., Van der Zee, S., Leijnse, A.: Transport and degradation of propyleneglycol and potassium acetate in the unsaturated zone. J. Contam. Hydrol. 49, 23–48 (2001). https://doi.org/10.1016/S0169-7722(00)00187-X

    Article  Google Scholar 

  15. Wahlin, J., Klein-Paste, A.: Chemical melting of ice effect of solution freezing point on the melting rate. Transport Res. Rec. 2551, 111–117 (2016). https://doi.org/10.3141/2551-13

    Article  Google Scholar 

  16. Wahlin, J., Klein-Paste, A.: The effect of mass diffusion on the rate of chemical ice melting using aqueous solutions. Cold Reg. Sci. Technol. 139, 11–21 (2017). https://doi.org/10.1016/j.coldregions.2017.04.001

    Article  Google Scholar 

  17. Nilssen, K., Klein-Paste, A., Wahlin, J., Delapaz, M.A.: Use of calorimetry to measure ice-melting capacity. Transport Res. Rec. 2613, 1–7 (2017). https://doi.org/10.3141/2613-01

    Article  Google Scholar 

  18. Lee, B.D., Choi, Y.S., Kim, Y.G., Kim, I.S., Yang, E.I.: A comparison study of performance and environmental impacts of chloride-based deicers and eco-label certified deicers in South Korea. Cold Reg. Sci. Technol. 143, 43–51 (2017). https://doi.org/10.1016/j.coldregions.2017.08.010

    Article  Google Scholar 

  19. Geological Survey, U.S.: Mineral commodity summaries 2019. U.S Geological Survey, Reston (2019)

    Google Scholar 

  20. Burgis, C.R., Hayes, G.M., Henderson, D.A., Zhang, W., Smith, J.A.: Green stormwater infrastructure redirects deicing salt from surface water to groundwater. Sci. Total Environ. 729, 138736 (2020). https://doi.org/10.1016/j.scitotenv.2020.138736

    Article  Google Scholar 

  21. Hsieh, C.H., Davis, A.P.: Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J. Environ. Eng. 131, 1521–1531 (2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1521)

    Article  Google Scholar 

  22. Bora, M.J., Bordoloi, S., Kumar, H., Gogoi, N., Zhu, H.H., Sarmah, A.K., Sreeja, P., Sreedeep, S., Mei, G.X.: Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. Int. J. Damage Mech. 30, 484–501 (2021). https://doi.org/10.1177/1056789520925524

    Article  Google Scholar 

  23. Garg, A., Xing, X., Bordoloi, S.: Water retention models for soils mixed with waste residues: application of the modified van-Genuchten and Brooks-Corey models. Biomass Convers. Bior. (2020). https://doi.org/10.1007/s13399-020-00957-x

    Article  Google Scholar 

  24. Huang, S., Garg, A., Mei, G.X., Huang, D.S., Chandra, R.B., Sadasiv, S.G.: Experimental study on the hydrological performance of green roofs in the application of novel biochar. Hydrol. Process. 34, 4512–4525 (2020). https://doi.org/10.1002/hyp.13881

    Article  Google Scholar 

  25. Omondi, M.O., Xia, X., Nahayo, A., Liu, X.Y., Korai, P.K., Pan, G.X.: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 274, 28–34 (2016). https://doi.org/10.1016/j.geoderma.2016.03.029

    Article  Google Scholar 

  26. Garg, A., Bordoloi, S., Ni, J., Cai, W., Maddibiona, P.G., Mei, G., Poulsen, T.G., Lin, P.: Influence of biochar addition on gas permeability in unsaturated soil. Geotech. Lett. 9, 66–71 (2019). https://doi.org/10.1680/jgele.18.00190

    Article  Google Scholar 

  27. Hussain, R., Ravi, K., Garg, A.: Influence of biochar on the soil water retention characteristics (SWRC): potential application in geotechnical engineering structures. Soil Till. Res. (2020). https://doi.org/10.1016/j.still.2020.104713

    Article  Google Scholar 

  28. Wang, Z.Y., Liu, G.C., Zheng, H., Li, F.M., Ngo, H.H., Guo, W.S., Liu, C., Chen, L., Xing, B.S.: Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technol. 177, 308–317 (2015). https://doi.org/10.1016/j.biortech.2014.11.077

    Article  Google Scholar 

  29. Racek, J., Sevcik, J., Chorazy, T., Kucerik, J., Hlavinek, P.: Biochar - recovery material from pyrolysis of sewage sludge: a review. Waste Biomass Valori. 11, 3677–3709 (2020). https://doi.org/10.1007/s12649-019-00679-w

    Article  Google Scholar 

  30. Mukherjee, A., Zimmerman, A.R.: Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 193, 122–130 (2013). https://doi.org/10.1016/j.geoderma.2012.10.002

    Article  Google Scholar 

  31. Ferreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M.: Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste Biomass Valori. 10, 3089–3100 (2019). https://doi.org/10.1007/s12649-018-0347-1

    Article  Google Scholar 

  32. Bordoloi, S., Hussain, R., Gadi, V.K., Bora, H., Sahoo, L., Karangat, R., Garg, A., Sreedeep, S.: Monitoring soil cracking and plant parameters for a mixed grass species. Geotech. Let. 8, 49–55 (2018). https://doi.org/10.1680/jgele.17.00145

    Article  Google Scholar 

  33. Mei, G., Kumar, H., Huang, H., Cai, W.L., Reddy, N.G., Chen, P.N., Garg, A., Ganeshan, S.P.: Desiccation cracks mitigation using biomass derived carbon produced from aquatic species in South China Sea. Waste Biomass Valori. 12, 1493–1505 (2021). https://doi.org/10.1007/s12649-020-01057-7

    Article  Google Scholar 

  34. Rukhaiyar, S., Huang, S., Song, H.H., Lin, P., Garg, A., Bordoloi, S.: A new intelligent model for computing crack in compacted soil-biochar mix: application in green infrastructure. Geotech. Geol. Eng. 38, 201–214 (2020). https://doi.org/10.1007/s10706-019-01009-6

    Article  Google Scholar 

  35. Wani, I., Kumar, H., Rangappa, S.M., Peng, L.: Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J. Hazard. Toxic Radioact. Waste 25, 04020061 (2021). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000561

    Article  Google Scholar 

  36. Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S.: Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manage. 146, 189–197 (2014). https://doi.org/10.1016/j.jenvman.2014.08.003

    Article  Google Scholar 

  37. Lehmann, J.: Bio-energy in the black. Front Ecol Environ 5, 381–387 (2007). https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

    Article  Google Scholar 

  38. Dong, X.L., Li, G.T., Lin, Q.M., Zhao, X.R.: Quantity and quality changes of biochar aged for 5 years in soil under field conditions. CATENA 159, 136–143 (2017). https://doi.org/10.1016/j.catena.2017.08.008

    Article  Google Scholar 

  39. Gunal, E., Erdem, H., Celik, I.: Effects of three different biochars amendment on water retention of silty loam and loamy soils. Agr. Water Manage. 208, 232–244 (2018). https://doi.org/10.1016/j.agwat.2018.06.004

    Article  Google Scholar 

  40. Paetsch, L., Mueller, C.W., Kogel-Knabner, I., von Lutzow, M., Girardin, C., Rumpel, C.: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-25039-x

    Article  Google Scholar 

  41. Cao, T., Chen, W., Yang, T., He, T., Liu, Z., Meng, J.: Surface characterization of aged biochar incubated in different types of soil. BioResources 12, 6366–6377 (2017)

    Article  Google Scholar 

  42. Mia, S., Dijkstra, F.A., Singh, B.: Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Adv. Agron. 141, 1–51 (2018). https://doi.org/10.1016/bs.agron.2016.10.001

    Article  Google Scholar 

  43. Wani, I., Ramola, S., Garg, A., Kushvaha, V.: Critical review of biochar applicationsin geoengineering infrastructure: moving beyond agricultural and environmental perspectives. Biomass Convers. Bior. (2021). https://doi.org/10.1007/s13399-021-01346-8

    Article  Google Scholar 

  44. Wani, I., Narde, S.R., Huang, X., Remya, N., Kushvaha, V., Garg, A.: Reviewing role of biochar in controlling soil erosion and considering future aspect of production using microwave pyrolysis process for the same. Biomass Convers. Bior. (2021). https://doi.org/10.1007/s13399-021-02060-1

    Article  Google Scholar 

  45. Wani, I., Sharma, A., Kushvaha, V., Madhushri, P., Peng, L.: Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J. Hazard. Toxic Radioact. Waste 24, 04020048 (2020). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000545

    Article  Google Scholar 

  46. Pan, Z.Y., Garg, A., Huang, S., Mei, G.X.: Swelling suppression mechanism of compacted expansive soil amended with animal and plant based biochar. Waste Biomass Valori. 12, 2653–2664 (2021). https://doi.org/10.1007/s12649-020-01172-5

    Article  Google Scholar 

  47. Wang, H., Zhang, K.X., Gan, L., Liu, J.Q., Mei, G.X.: Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure. Int. J. Damage Mech. 30, 595–617 (2021). https://doi.org/10.1177/1056789520974416

    Article  Google Scholar 

  48. Ni, J.J., Bordoloi, S., Shao, W., Garg, A., Xu, G.Z., Sarmah, A.K.: Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.136486

    Article  Google Scholar 

  49. Quinn, R., Dussaillant, A.: The impact of macropores on heavy metal retention in sustainable drainage systems. Hydrol. Res. 49, 517–527 (2018). https://doi.org/10.2166/nh.2018.277

    Article  Google Scholar 

  50. Ghanbarian-Alavijeh, B., Millan, H.: The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma 151, 224–232 (2009). https://doi.org/10.1016/j.geoderma.2009.04.014

    Article  Google Scholar 

  51. Garg, A., Li, J.H., Hou, J.J., Berretta, C., Garg, A.: A new computational approach for estimation of wilting point for green infrastructure. Measurement 111, 351–358 (2017). https://doi.org/10.1016/j.measurement.2017.07.026

    Article  Google Scholar 

  52. Gadi, V.K., Hussain, R., Bordoloi, S., Hossain, S., Singh, S.R., Garg, A., Sekharan, S., Karangat, R., Lingaraj, S.: Relating stomatal conductance and surface area with evapotranspiration induced suction in a heterogeneous grass cover. J. Hydrol. 568, 867–876 (2019). https://doi.org/10.1016/j.jhydrol.2018.11.048

    Article  Google Scholar 

  53. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  54. Arifin, Y.F., Schanz, T.: Osmotic suction of highly plastic clays. Acta Geotech. 4, 177–191 (2009). https://doi.org/10.1007/s11440-009-0097-0

    Article  Google Scholar 

  55. Gopal, P., Bordoloi, S., Ratnam, R., Lin, P., Cai, W.L., Buragohain, P., Garg, A., Sreedeep, S.: Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys. 67, 231–246 (2019). https://doi.org/10.1007/s11600-018-0237-8

    Article  Google Scholar 

  56. Gadi, V.K., Tang, Y.R., Das, A., Monga, C., Garg, A., Berretta, C., Sahoo, L.: Spatial and temporal variation of hydraulic conductivity and vegetation growth in green infrastructures using infiltrometer and visual technique. CATENA 155, 20–29 (2017). https://doi.org/10.1016/j.catena.2017.02.024

    Article  Google Scholar 

  57. Bordoloi, S., Yamsani, S.K., Garg, A., Sekharan, S.: Critical assessment of infiltration measurements for soils with varying fine content using a mini disk infiltrometer. J. Test Eval. 47, 868–888 (2019). https://doi.org/10.1520/JTE20170328

    Article  Google Scholar 

  58. Haberle, J., Svoboda, P.: Impacts of use of observed and exponential functions of root distribution in soil on water utilization and yield of wheat, simulated with a crop model. Arch. Agron. Soil Sci. 60, 1533–1542 (2014). https://doi.org/10.1080/03650340.2014.903560

    Article  Google Scholar 

  59. Wang, H., Garg, A., Huang, S., Mei, G.X.: Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: simultaneous investigation of hydraulic and mechanical properties. Acta Geophys. 68, 737–749 (2020). https://doi.org/10.1007/s11600-020-00423-2

    Article  Google Scholar 

  60. Xing, X.G., Kang, D.G., Ma, X.Y.: Differences in loam water retention and shrinkage behavior: effects of various types and concentrations of salt ions. Soil Till. Res. 167, 61–72 (2017). https://doi.org/10.1016/j.still.2016.11.005

    Article  Google Scholar 

  61. Ren, J., Li, X., Zhao, K., Fu, B., Jiang, T.: Study of an on-line measurement method for the salt parameters of soda-saline soils based on the texture features of cracks. Geoderma 263, 60–69 (2016). https://doi.org/10.1016/j.geoderma.2015.08.039

    Article  Google Scholar 

  62. Zhang, T.W., Deng, Y.F., Cui, Y.J., Lan, H.X., Zhang, F.Y., Zhang, H.Y.: Porewater salinity effect on flocculation and desiccation cracking behaviour of kaolin and bentonite considering working condition. Eng. Geol. 251, 11–23 (2019). https://doi.org/10.1016/j.enggeo.2019.02.007

    Article  Google Scholar 

Download references

Acknowledgements

All authors would like to express their gratitude sincerely to the National Natural Science Foundation of China (No. 51578196), the Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515120083) and the Shenzhen Key Laboratory Launching Project (No. ZDSYS20200810113601005) for financial supports.

Funding

All authors would like to express their gratitude sincerely to the National Natural Science Foundation of China (No. 51578196), the Guangdong Basic and Applied Basic Research Foundation (No. 2020B1515120083) and the Shenzhen Key Laboratory Launching Project (No. ZDSYS20200810113601005) for financial supports.

Author information

Authors and Affiliations

Authors

Contributions

HW Conceptualization, Methodology, Investigation, Formal analysis, Writing—original draft. AG Validation, Visualization, Project administration, Writing—Review & Editing. YP Resources, Formal analysis, Validation, Visualization. SS Data Curation, Validation, Writing—Review & Editing. RC Funding acquisition, Validation, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Rui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Garg, A., Ping, Y. et al. Effects of Biochar Derived from Coconut Shell on Soil Hydraulic Properties under Salt Stress in Roadside Bioretention. Waste Biomass Valor 14, 1005–1022 (2023). https://doi.org/10.1007/s12649-022-01877-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01877-9

Keywords

Navigation