Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Indoor Topological Localization Based on a Novel Deep Learning Technique

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Millions of people in the world suffer from vision impairment or vision loss. Traditionally, they rely on guide sticks or dogs to move around and avoid potential obstacles. However, both guide sticks and dogs are passive. They are unable to provide conceptual knowledge or semantic contents of an environment. To address this issue, this paper presents a vision-based cognitive system to support the independence of visually impaired people. More specifically, a 3D indoor semantic map is firstly constructed with a hand-held RGB-D sensor. The constructed map is then deployed for indoor topological localization. Convolutional neural networks are used for both semantic information extraction and location inference. Semantic information is used to further verify localization results and eliminate errors. The topological localization performance can be effectively improved despite significant appearance changes within an environment. Experiments have been conducted to demonstrate that the proposed method can increase both localization accuracy and recall rates. The proposed system can be potentially deployed by visually impaired people to move around safely and have independent life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. The World Health Organization - visual impairment and blindness. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs282/en/.

  2. Schönberger JL, Pollefeys M, Geiger A, Sattler T. Semantic visual localization. IEEE Conference on computer vision and pattern recognition (CVPR); 2018. p. 6896–06.

  3. Liu Q, Li R, Hu H, Gu D. Extracting semantic information from visual data: a survey. Robotics 2016; 5(1):8.

    Article  Google Scholar 

  4. Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3-D mapping with an RGB-D camera. IEEE Trans Robot 2014;30(1):177–87.

    Article  Google Scholar 

  5. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis (IJCV) 2015;115(3):211–52.

    Article  Google Scholar 

  6. Lowry S, Sünderhauf N, Newman P, Leonard JJ, Cox D, Corke P, Milford M. Visual place recognition: a survey. IEEE Trans Robot 2016;32(1):1–9.

    Article  Google Scholar 

  7. Biswas R, Limketkai B, Sanner S, Thrun S. Towards object mapping in non-stationary environments with mobile robots. 2002 IEEE/RSJ International C on Intelligent Robots and Systems (IROS). IEEE; 2002. p. 1014–9.

  8. Brucker M, Durner M, Ambruş R, Márton ZC, Wendt A, Jensfelt P, Arras KO, Triebel R. Semantic labeling of indoor environments from 3D RGB maps. IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. p. 1871–78.

  9. Garg S, Suenderhauf N, Milford M. Don’t look back: robustifying place categorization for viewpoint-and condition-invariant place recognition. IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. p. 3645–52.

  10. Lee T-j, Kim C-h, Cho D-iD. A monocular vision sensor-based efficient slam method for indoor service robots. IEEE Trans Ind Electron 2019;66(1):318–28.

    Article  Google Scholar 

  11. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (SURF). Comput Vis Image Understand 2008;110(3):346–59.

    Article  Google Scholar 

  12. Bloesch M, Czarnowski J, Clark R, Leutenegger S, Davison AJ. CodeSLAM—learning a compact, optimisable representation for dense visual SLAM. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2018. p. 2560–68.

  13. Li R, Wang S, Long Z, Gu D. Undeepvo: monocular visual odometry through unsupervised deep learning. IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. p. 7286–91.

  14. Liu Q, Li R, Hu H, Gu D. Using unsupervised deep learning technique for monocular visual odometry. IEEE Access 2019;7:18076–88.

    Article  Google Scholar 

  15. Li R, Wang S, Gu D. Ongoing evolution of visual slam from geometry to deep learning: challenges and opportunities. Cogn Comput 2018;10(6):875–89.

    Article  Google Scholar 

  16. Grimmett H, Buerki M, Paz L, Pinies P, Furgale P, Posner I, Newman P. Integrating metric and semantic maps for vision-only automated parking. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 2159–66.

  17. Hart JW, Shah R, Kirmani S, Walker N, Baldauf K, John N, Stone P. PRISM: pose registration for integrated semantic mapping. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. p. 896–902.

  18. Maturana D, Chou P. -W., Uenoyama M, Scherer S. Real-time semantic mapping for autonomous off-road navigation. Field and service robotics. Springer; 2018. p. 335–50.

  19. Arroyo R, Alcantarilla PF, Bergasa LM, Romera E. Are you able to perform a life-long visual topological localization? Auton Robot 2018;42(3):665–85.

    Article  Google Scholar 

  20. Li Y, Hu Z, Hu Y, Chu D. Integration of vision and topological self-localization for intelligent vehicles. Mechatronics 2018;51:46–58.

    Article  Google Scholar 

  21. Huang AS, Bachrach A, Henry P, Krainin M, Maturana D, Fox D, Roy N. Visual odometry and mapping for autonomous flight using an RGB-D camera. Robotics research. Springer; 2017 . p. 235–52.

  22. Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: an astounding baseline for recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2014. p. 806–13.

  23. Wen G, Hou Z, Li H, Li D, Jiang L, Xun E. 2017. Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn Comput, 1–4.

  24. Yue Z, Gao F, Xiong Q, Wang J, Huang T, Yang E, Zhou H. 2019. A novel semi-supervised convolutional neural network method for synthetic aperture radar image recognition. Cogn Comput, 1–2.

  25. Ren P, Sun W, Luo C, Hussain A. 2017. Clustering-oriented multiple convolutional neural networks for single image super-resolution. Cogn Comput, 1–4.

  26. Li R, Gu D, Liu Q, Long Z, Hu H. 2017. Semantic scene mapping with spatio-temporal deep neural network for robotic applications. Cogn Comput, 1–2.

  27. Chen X, Kundu K, Zhu Y, Ma H, Fidler S, Urtasun R. 3D object proposals using stereo imagery for accurate object class detection. IEEE Trans Pattern Anal Mach Intell 2018;40(5):1259–72.

    Article  Google Scholar 

  28. Sunderhauf N, Shirazi S, Dayoub F, Upcroft B, Milford M. On the performance of ConvNet features for place recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 4297–304.

  29. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2015. Rethinking the Inception architecture for computer vision. arXiv:https://arxiv.org/abs/1512.00567.

  30. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015. p. 1–9.

  31. Zeng Z, Li Z, Cheng D, Zhang H, Zhan K, Yang Y. Two-stream multirate recurrent neural network for video-based pedestrian reidentification. IEEE Trans Indus Inform 2018;14(7):3179–86.

    Article  Google Scholar 

  32. Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W. g2o: a general framework for graph optimization. 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2011. p. 3607–13.

  33. Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 1981;24(6):381–95.

    Article  Google Scholar 

  34. Zender H, Mozos OM, Jensfelt P, Kruijff G-J, Burgard W. Conceptual spatial representations for indoor mobile robots. Robot Auton Syst 2008;56(6):493–502.

    Article  Google Scholar 

  35. Samba - opening windows to a wider world. [Online]. Available: https://www.samba.org/.

  36. TensorFlow. [Online]. Available: https://www.tensorflow.org/.

  37. Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:https://arxiv.org/abs/1409.1556.

  38. Zhou B, Lapedriza A, Khosla A, Oliva A, Torralba A. Places: a 10 million image database for scene recognition. IEEE Trans Pattern Anal Mach Intell 2018;40(6):1452–64.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Robin Dowling and Ian Dukes from the University of Essex for their technical support. Our thanks also go to Poppy Rees-Smith from Oxford Brookes University for her valuable comments.

Funding

The first two authors have been financially supported by the China Scholarship Council and University of Essex joint scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, R., Hu, H. et al. Indoor Topological Localization Based on a Novel Deep Learning Technique. Cogn Comput 12, 528–541 (2020). https://doi.org/10.1007/s12559-019-09693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09693-5

Keywords

Navigation