Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Improving Automatic Detection of Obstructive Sleep Apnea Through Nonlinear Analysis of Sustained Speech

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

We present a novel approach for the detection of severe obstructive sleep apnea (OSA) based on patients’ voices introducing nonlinear measures to describe sustained speech dynamics. Nonlinear features were combined with state-of-the-art speech recognition systems using statistical modeling techniques (Gaussian mixture models, GMMs) over cepstral parameterization (MFCC) for both continuous and sustained speech. Tests were performed on a database including speech records from both severe OSA and control speakers. A 10 % relative reduction in classification error was obtained for sustained speech when combining MFCC-GMM and nonlinear features, and 33 % when fusing nonlinear features with both sustained and continuous MFCC-GMM. Accuracy reached 88.5 % allowing the system to be used in OSA early detection. Tests showed that nonlinear features and MFCCs are lightly correlated on sustained speech, but uncorrelated on continuous speech. Results also suggest the existence of nonlinear effects in OSA patients’ voices, which should be found in continuous speech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Faundez-Zanuy M, McLaughlin S, Esposito A, Hussain A, Schoentgen J, Kubin G, Kleijn WB, Maragos P. Nonlinear speech processing: overview and applications. Control Intell Syst. 2002;30:1–10.

    Google Scholar 

  2. Kubin G. Nonlinear processing of speech. In: Kleijn WB, Paliwal KK, editors. Speech coding and synthesis. Amsterdam: Elsevier Science; 1995.

    Google Scholar 

  3. Little MA, Costello DAE, Harries ML. Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures. J Voice. 2009;25(1):21–31.

    Article  PubMed  Google Scholar 

  4. Tsanas A, Little MA, McSharry PE, Ramig LO. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J R Soc Interface. 2010;8:842–55.

    Article  PubMed  Google Scholar 

  5. Gómez-Vilda P, Rodellar-Biarge MV, Nieto-Lluis V, Muñoz-Mulas C, Mazaira-Fernández LM, Ramírez-Calvo C, Fernández-Fernández M, Toribio-Díaz E. Neurological disease detection and monitoring from voice production. Lecture notes in artificial intelligence. Volume 7015: nonlinear speech processing NOLISP 2011, Springer; 2011.

  6. Arias-Londoño JD, Godino-Llorente JI, Sáenz-Lechón N, Osma-Ruiz V, Castellanos-Domínguez G. Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients. IEEE Trans Biomed Eng 2011;58(2):370–9.

    Google Scholar 

  7. KayPENTAX. Massachusetts Eye and Ear Infirmary (MEEI) Voice and Speech Lab. Disordered Voice Database and Program, Model 4337. Viewed September 2011; 2011. http://www.kaypentax.com.

  8. Puertas FJ, Pin G, María JM, Durán J. Documento de consenso Nacional sobre el síndrome de Apneas-hipopneas del sueño. Grupo Español De Sueño; 2005.

  9. Coccagna G, Pollini A, Provini F. Cardiovascular disorders and obstructive sleep apnea syndrome. Clin Exp Hypertens. 2006;28:217–24.

    Article  PubMed  Google Scholar 

  10. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Farré R. Sleep disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186(2):190–4.

    Google Scholar 

  11. Lloberes P, Levy G, Descals C, et al. Self-reported sleepiness while driving as a risk factor for traffic accidents in patients with obstructive sleep apnoea syndrome and in non-apnoeic snorers. Respir Med. 2000;94(10):971–6.

    Article  PubMed  CAS  Google Scholar 

  12. Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput. 2002;40(4):402–7.

    Article  PubMed  CAS  Google Scholar 

  13. Calisti M, Bocchi L, Manfredi C, Romagnoli I, Gigliotti F, Donzelli G. Automatic detection of snore episodes from full night sound recordings: home and clinical application. In: Proceedings of the 3rd advanced voice function assessment international workshop. 2009.

  14. Alcázar JD, Fernández R, Blanco JL, Hernández L, López L, Linde F, Torre-Toledano D. Automatic speaker recognition techniques: a new tool for sleep apnoea diagnosis. Am J Respir Crit Care Med. 2009;179:A2131.

    Google Scholar 

  15. Fernández-Pozo R, Blanco-Murillo JL, Hernández-Gómez L, López-Gonzalo E, Alcázar-Ramírez J, Torre-Toledano D. Assessment of severe apnoea through voice analysis, automatic speech, and speaker recognition techniques. EURASIP J Adv Signal Process. 2009;2009(982531). doi:10.1155/2009/982531.

  16. Blanco JL, Fernández R, Díaz-Pardo D, Sigüenza A, Hernández L, Alcázar J. Analyzing GMMs to characterize resonance anomalies in speaker suffering from apnoea. In: Proceedings of the 10th annual conference of the international speech communication association. 2009.

  17. Blanco JL, Fernández R, Torre D, Caminero FJ, López E. Analyzing training dependencies and posterior fusion in discriminative classification of apnea patients based on sustained and connected speech. In: Proceedings of the 12th annual conference of the international speech communication association. 2011.

  18. Goldshtein E, Tarasiuk A, Zigel Y. Automatic detection of obstructive sleep apnea using speech signals. IEEE Trans Biomed Eng. 2011;58(5):1373–82.

    Article  PubMed  Google Scholar 

  19. Ryan CM, Bradley TD. Pathogenesis of obstructive sleep apnoea. J Appl Physiol. 2005;99(6):2440–50.

    Article  PubMed  Google Scholar 

  20. Davidson TM. The Great Leap Forward: the anatomic evolution of obstructive sleep apnoea. Sleep Med. 2003;4:185–94.

    Article  PubMed  Google Scholar 

  21. Fox AW, Monoson PK, Morgan CD. Speech dysfunction of obstructive sleep apnea. A discriminant analysis of its descriptors. Chest. 1996;96(3):589–95.

    Article  Google Scholar 

  22. Kummer A. Cleft palate and craniofacial anomalies: effects on speech and resonance. Clifton Park: Thomson Delmar Learning; 2001.

    Google Scholar 

  23. Robb MP, Yates J, Morgan EJ. Vocal tract resonance characteristics of adults with obstructive sleep apnea. Acta Otolaryngol. 1997;117(5):760–3.

    Article  PubMed  CAS  Google Scholar 

  24. Fiz JA, Morera J, Abad J, et al. Acoustic analysis of vowel emission in obstructive sleep apnea. Chest. 1993;104(4):1093–6.

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez R, Hernández LA, López E, Alcázar J, Portillo G, Toledano DT. Design of a multimodal database for research on automatic detection of severe apnoea cases. In: Proceedings of 6th language resources and evaluation conference. LREC, Marrakech; 2008.

  26. Linde de Luna F, Alcazar J, Vergara C, Blanco JL, Fernandez R, Hernandez LA, Lopez E. Combining voice classification scores with clinical data for improving sleep apnea syndrome diagnosis. Am J Respir Crit Care Med. 2012;185:A6427.

    Google Scholar 

  27. Huang X, Acero A, Hon WH. Spoken language processing. Englewood Cliffs: Prentice-Hall; 2001.

    Google Scholar 

  28. Reynolds DA, Quatieri TF, Dunn RB. Speaker verification using adapted gaussian mixture models. Digit Signal Process. 2000;10:19–41.

    Article  Google Scholar 

  29. Godino-Llorente JI, Gomez-Vilda P, Blanco-Velasco M. Dimensionality reduction of a pathological voice quality assessment system based on gaussian mixture models and short-term cepstral parameters. IEEE Trans Biomed Eng. 2006;53(10):1943–53.

    Article  PubMed  Google Scholar 

  30. Blouet R, Mokbel C, Mokbel H, Sanchez-Soto E, Chollet G, Greige, H. BECARS: a Free Software for Speaker Verification. In: Proceedings of the speaker and language recognition workshop, ODYSSEY; 2004. p. 145–148.

  31. Young SJ, Evermann G, Gales MJF, Hain T, Kershaw D, Moore G, Odell J, Ollason D, Povey D, Valtchev V, Woodland PC. The HTK Book, version 3.4. Cambridge, UK: Cambridge University Press; 2006.

  32. Moreno A, Poch D, Bonafonte A, Lleida E, Llisterri J, Mariño JB, Nadeu C. ALBAYZIN speech database: design of the phonetic corpus. In: Proceedings of Eurospeech 93, vol. 1. Berlin, Germany, 1993. p. 175–178.

  33. Childers DG. Speech processing and synthesis toolboxes. New York: Wiley; 2000.

    Google Scholar 

  34. Farrús M, Hernando J. Using jitter and shimmer in speaker verification. IET Signal Process J. Special issue on biometric recognition; 2008. doi:10.1049/iet-spr.2008.0147.

  35. Brookes M. VOICEBOX: Speech processing toolbox for Matlab. Department of Electrical & Electronic Engineering. Imperial College, London; 2002. http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

Download references

Acknowledgments

The activities described in this paper were funded by the Spanish Ministry of Science and Innovation as part of the TEC2009-14719-C02-02 (PriorSpeech) project. The corresponding author also acknowledges the support from Universidad Politécnica de Madrid full-time PhD scholarship program. Finally, authors would like to thank Athanasios Tsanas, Max Little and Professor J. I. Godino Llorente, for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, J.L., Hernández, L.A., Fernández, R. et al. Improving Automatic Detection of Obstructive Sleep Apnea Through Nonlinear Analysis of Sustained Speech. Cogn Comput 5, 458–472 (2013). https://doi.org/10.1007/s12559-012-9168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-012-9168-x

Keywords

Navigation