Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Development of a Lightweight and High-efficiency Compact Cycloidal Reducer for Legged Robots

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Actuating systems for the proprioceptive control of legged robots must have a high mechanical efficiency and mechanical bandwidth for high torque transmission to avoid power transmission losses. We developed a high-efficiency compact cycloidal reducer for legged robots that uses needle roller bearings in all parts where contact occurs during the power transfer process inside the reducer, which greatly improves the efficiency compared to a cycloidal reducer using free rollers. We also proposed a subcarrier structure that distributes the load and allows the cycloidal reducer to respond robustly to impacts that may occur during the locomotion of the legged robot. The subcarrier increases the stiffness, which improves the mechanical bandwidth. A cycloidal reducer was manufactured with > 90% efficiency in most operating ranges; it weighs 766 g and can withstand a torque of more than 155 Nm. The cycloidal reducer module coupled with the motor indicated a torque control bandwidth of 72 Hz, so it can be used for legged robots with agile motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Seok, S., Wang, A., Otten, D., & Kim, S. (2012). Actuator design for high force proprioceptive control in fast legged locomotion. In Proceedings in 2012 IEEE/RSJ international conference on intelligent robots and systems, Vilamoura (pp. 1970–1975).

  2. Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In Proceedings in 2012 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, Pittsburgh, PA (pp. 399–406).

  3. Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., et al. (2016). ANYmal—A highly mobile and dynamic quadrupedal robot. In Proceedings in 2016 IEEE/RSJ international conference on intelligent robots and systems, Daejeon (pp. 38–44).

  4. Radford, N. A., Strawser, P., Hambuchen, K., Mehling, J. S., Verdeyen, W. K., Donnan, A. S., et al. (2015). Valkyrie: NASA’s first bipedal humanoid robot. Journal of Field Robotics, 32(3), 397–419.

    Article  Google Scholar 

  5. Ott, C., Baumgärtner, C., Mayr, J., Fuchs, M., Burger, R., Lee, D., et al. (2010). Development of a biped robot with torque controlled joints. In Proceedings in 2010 10th IEEE-RAS international conference on humanoid robots, Nashville, TN (pp. 167–173).

  6. Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G., et al. (2017). WALK-MAN: A high-performance humanoid platform for realistic environments. Journal of Field Robotics, 34(7), 1225–1259.

    Article  Google Scholar 

  7. Yoshiike, T., Kuroda, M., Ujino, R., Kaneko, H., Higuchi, H., Iwasaki, S., et al. (2017). Development of experimental legged robot for inspection and disaster response in plants. In Proceedings in 2017 IEEE/RSJ international conference on intelligent robots and systems, Vancouver, BC (pp. 4869–4876).

  8. Lee, K., Sim, O., Jeong, H., Oh, J., Bae, H., Hong, S., et al. (2018). Implementing full-body torque control in humanoid robot with high gear ratio using pulse width modulation voltage. In Proceedings in 2018 IEEE/RSJ international conference on intelligent robots and systems, Madrid (pp. 726–732).

  9. Del Prete, A., Mansard, N., Ramos, O. E., Stasse, O., & Nori, F. (2016). Implementing torque control with high-ratio gear boxes and without joint-torque sensors. International Journal of Humanoid Robotics, 13(1), 1550044.

    Article  Google Scholar 

  10. Wensing, P. M., Wang, A., Seok, S., Otten, D., Lang, J., & Kim, S. (2017). Proprioceptive actuator design in the MIT Cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Transactions on Robotics, 33(3), 509–522.

    Article  Google Scholar 

  11. Hwangbo, J., Tsounis, V., Kolvenbach, H., & Hutter, M. (2018). Cable-driven actuation for highly dynamic robotic systems. In Proceedings in 2018 IEEE/RSJ international conference on intelligent robots and systems, Madrid (pp. 8543–8550).

  12. Sensinger, J. W., & Lipsey, J. H. (2012). Cycloid vs. harmonic drives for use in high ratio, single stage robotic transmissions. In Proceedings in 2012 IEEE international conference on robotics and automation, St. Paul, MN (pp. 4130–4135).

  13. Nabtesco. https://precision.nabtesco.com. Accessed 1 Mar 2019.

  14. Sumitomo Drive Technologies. https://us.sumitomodrive.com/en/fine-cyclo-drive. Accessed 1 Mar 2019.

  15. Nidec. http://www.nidec-shimpo.co.jp/. Accessed March 1, 2019.

  16. Onivo. https://www.onviollc.com. Accessed 1 Mar 2019.

  17. DYNAMIXEL Cycloidal reducer. http://emanual.robotis.com/docs/en/dxl/pro_plus/h54p-200-s500-r/. Accessed 1 Mar 2019.

  18. Cassie. http://www.agilityrobotics.com/robots. Accessed 1 Mar 2019.

  19. Sensinger, J. W. (2013). Efficiency of high-sensitivity gear trains, such as cycloid drives. Journal of Mechanical Design, 135(7), 071006.

    Article  Google Scholar 

  20. Li, X., Li, C., Wang, Y., Chen, B., & Lim, T. C. (2017). Analysis of a cycloid speed reducer considering tooth profile modification and clearance-fit output mechanism. Journal of Mechanical Design, 139(3), 033303.

    Article  Google Scholar 

  21. Xu, L. X., Chen, B. K., & Li, C. Y. (2019). Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137, 432–458.

    Article  Google Scholar 

  22. Shin, J.-H., & Kwon, S.-M. (2006). On the lobe profile design in a cycloid reducer using instant velocity center. Mechanism and Machine Theory, 41(5), 596–616.

    Article  Google Scholar 

  23. Tran, T. L., Pham, A. D., & Ahn, H.-J. (2016). Lost motion analysis of one stage cycloid reducer considering tolerances. International Journal of Precision Engineering and Manufacturing, 17(8), 1009–1016.

    Article  Google Scholar 

  24. Blanche, J. G., & Yang, D. C. H. (1989). Cycloid drives with machining tolerances. Journal of Mechanisms, Transmissions, and Automation in Design, 111(3), 337.

    Article  Google Scholar 

  25. Yan, H.-S., & Lai, T.-S. (2002). Geometry design of an elementary planetary gear train with cylindrical tooth-profiles. Mechanism and Machine Theory, 37(8), 757–767.

    Article  MathSciNet  Google Scholar 

  26. Ye, Z., Zhang, W., Huang, Q., & Chen, C. (2006). Simple explicit formulae for calculating limit dimensions to avoid undercutting in the rotor of a cycloid rotor pump. Mechanism and Machine Theory, 41(4), 405–414.

    Article  Google Scholar 

  27. Hwang, Y.-W., & Hsieh, C.-F. (2007). Geometric design using hypotrochoid and nonundercutting conditions for an internal cycloidal gear. Journal of Mechanical Design, 129(4), 413.

    Article  Google Scholar 

  28. Mimmi, G. C., & Pennacchi, P. E. (2000). Non-undercutting conditions in internal gears. Mechanism and Machine Theory, 35(3), 477–490.

    Article  Google Scholar 

  29. Sensinger, J. W. (2010). Unified approach to cycloid drive profile, stress, and efficiency optimization. Journal of Mechanical Design, 132(2), 024503.

    Article  Google Scholar 

  30. Malhotra, S., & Parameswaran, M. (1983). Analysis of a cycloid speed reducer. Mechanism and Machine Theory, 18(6), 491–499.

    Article  Google Scholar 

  31. Blagojevic, M., Marjanovic, N., Djordjevic, Z., Stojanovic, B., & Disic, A. (2011). A new design of a two-stage cycloidal speed reducer. Journal of Mechanical Design, 133(8), 085001.

    Article  Google Scholar 

  32. igus cycloidal gear. https://www.igus.eu/info/news-2017-rl-c. Accessed 1 Mar 2019.

  33. NTN needle roller bearings handbook. http://www.ntnamericas.com/en/website/documents/brochures-and-literature/tech-sheets-and-supplements/needle_roller_bearings_handbook_cat_9013-e_lowres.pdf. Accessed 1 Mar 2019.

  34. Oh, J., Bae, H., Jeong, H., Lee, K., & Oh, J.-H. (2017). BLDC motor current control using filtered single DC link current based on adaptive extended Kalman filter. In Proceedings 2017 IEEE/RSJ international conference on intelligent robots and systems, Vancouver, BC (pp. 2213–2218).

  35. Lim, J., & Oh, J.-H. (2016). Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control. Journal of Field Robotics, 33(5), 687–705.

    Article  Google Scholar 

  36. Jung, T., Lim, J., Bae, H., Lee, K. K., Joe, H., & Oh, J.-H. (2018). Development of the humanoid disaster response. IEEE Transactions on Robotics, 34(1), 1–17.

    Article  Google Scholar 

  37. Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., et al. (2019). Humanoid robot HRP-5P: An electrically actuated humanoid robot with high-power and wide-range joints. IEEE Robotics and Automation Letters, 4(2), 1431–1438.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea entitled “Development of core technologies and a standard platform for humanoid robot [10060103].”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ho Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Hong, S. & Oh, JH. Development of a Lightweight and High-efficiency Compact Cycloidal Reducer for Legged Robots. Int. J. Precis. Eng. Manuf. 21, 415–425 (2020). https://doi.org/10.1007/s12541-019-00215-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00215-9

Keywords

Navigation