Abstract
A greedy randomized adaptive search procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the construction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solution. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut problem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP).
Similar content being viewed by others
Notes
The QAPLIB - A Quadratic Assignment Problem Library has an online version at http://anjos.mgi.polymtl.ca/qaplib/.
References
Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in grasp: an experimental investigation. J. Heuristics 8, 343–373 (2002)
Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Ttt plots: a perl program to create time-to-target plots. Optim. Lett. 1, 355–366 (2007)
Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: Reactive GRASP for the strip-packing problem. Comput. Oper. Res. 35(4), 1065–1083 (2008)
Andrade, D.V., Resende, M.G.C.: GRASP with path-relinking for network migration scheduling. In: Proceedings of the international network optimization conference (INOC 2007) (2007)
Andres, C., Miralles, C., Pastor, R.: Balancing and scheduling tasks in assembly lines with sequence-dependent setup times. Eur. J. Oper. Res. 187(3), 1212–1223 (2008)
Areibi, S., Vannelli, A.: A GRASP clustering technique for circuit partitioning. In: Gu, J., Pardalos, P.M., (eds.), Satisfiability Problems, vol. 35 of DIMACS series on discrete mathematics and theoretical computer science, pp. 711–724. American Mathematical Society, Providence (1997)
Arroyo, J.E.C., Vieira, P.S., Vianna, D.S.: A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann. Oper. Res. 159, 125–133 (2008)
Asano, T.: Approximation algorithms for MAX-SAT: Yannakakis vs. Goemans–Williamson. In: 5th IEEE Israel symposium on the theory of computing and systems, pp. 24–37 (1997)
Atkinson, J.B.: A greedy randomised search heuristic for time-constrained vehicle scheduling and the incorporation of a learning strategy. J. Oper. Res. Soc. 49, 700–708 (1998)
Barahona, F.: The max-cut problem in graphs not contractible to \(k_5\). Oper. Res. Lett. 2, 107–111 (1983)
Bard, J.F., Huang, L., Jaillet, P., Dror, M.: A decomposition approach to the inventory routing problem with satellite facilities. Transp. Sci. 32, 189–203 (1998)
Battiti, R., Protasi, M.: Approximate algorithms and heuristics for the MAX-SAT. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 1, pp. 77–148. Kluwer Academic Publishers, Berlin (1998)
Benlic, U., Hao, J.-K.: Breakout local search for maximum clique problems. Comput. Oper. Res. 40(1), 192–206 (2013)
Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A greedy randomized adaptive search procedure for job shop scheduling. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 58–79. Kluwer Academic Publishers, Berlin (2002)
Brusco, M.J., Stahl, S.: Using quadratic assignment methods to generate initial permutations for least-squares unidimensional scaling of symmetric proximity matrices. J. Classif. 17(2), 197–223 (2000)
Burer, S., Monteiro, R.D.C.: Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM J. Optim. 12, 503–521 (2001)
Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM Press, Philadelphia (2009)
Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global Optim. 10, 391–403 (1997)
Carreto, C., Baker, B.: A GRASP interactive approach to the vehicle routing problem with backhauls. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 185–200. Kluwer Academic Publishers, Berlin (2002)
Chen, J., Friesen, D., Zheng, H.: Tight bound on johnson’s algorithm for MAX-SAT. In: Proceedings of the 12th annual IEEE conference on computational complexity, pp. 274–281 (1997)
Christofides, N., Benavent, E.: An exact algorithm for the quadratic assignment problem. Oper. Res. 37(5), 760–768 (1989)
Commander, C.W.: Maximum cut problem, MAX-CUT. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1991–1999. Springer, Berlin (2009)
Contreras, I.A., Díaz, J.A.: Scatter search for the single source capacitated facility location problem. Ann. Oper. Res. 157, 73–89 (2008)
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, pp. 151–158 (1971)
Cravo, G.L., Ribeiro, G.M., Nogueira Lorena, L.A.: A greedy randomized adaptive search procedure for the point-feature cartographic label placement. Comput. Geosci. 34(4), 373–386 (2008)
Drezner, Z., Hahn, P.M., Taillard, É.D.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139, 65–94 (2005)
Eschermann, B., Wunderlich, H.J.: Optimized synthesis of self-testable finite state machines. In: 20th international symposium on fault-tolerant computing (FFTCS 20), pp. 390–397 (1990)
Facchiano, A., Festa, P., Marabotti, A., Milanesi, L., Musacchia, F.: Solving Biclustering with a GRASP-like Metaheuristic: Two Case-Studies on Gene Expression Analysis, vol. 7548 of Lecture Notes in Computer Science, pp. 253–267. Springer, Berlin (2012)
Feige, U., Goemans, M.X.: Approximating the value of two proper proof systems, with applications to MAX-2SAT and MAX-DICUT. In: Proceeding of the third Israel symposium on theory of computing and systems, pp. 182–189 (1995)
Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)
Ferone, D., Festa, P., Resende, M.G.C.: Hybrid metaheuristics for the far from most string problem. In: Proceedings of HM 2013, vol. 7919 of lecture notes in computer science, pp. 174–188. Springer, Berlin (2013)
Festa, P.: On some optimization problems in molecular biology. Math. Biosci. 207(2), 219–234 (2007)
Festa, P.: A biased random-key genetic algorithm for data clustering. Math. Biosci. 245(1), 76–85 (2013)
Festa, P., Pardalos, P.M.: Efficient solutions for the far from most string problem. Ann. Oper. Res. 196(1), 663–682 (2012)
Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path-relinking for the weighted MAXSAT problem. ACM J. Exp. Algorithmics 11, 1–16 (2006)
Festa, P., Pardalos, P.M., Resende, M.G.C.: Algorithm 815: FORTRAN subroutines for computing approximate solution to feedback set problems using GRASP. ACM Trans. Math. Softw. 27, 456–464 (2001)
Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the MAX-CUT problem. Optim. Methods Softw. 17(6), 1033–1058 (2002)
Festa, P., Resende, M.G.C.: GRASP: an annotated bibliography. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Academic Publishers, Berlin (2002)
Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part I: algorithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009)
Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP—Part II: applications. Int. Trans. Oper. Res. 16(2), 131–172 (2009)
Festa, P., Resende, M.G.C.: GRASP: basic components and enhancements. Telecommun. Syst. 46(3), 253–271 (2011)
Frinhani, R.M.D., Silva, R.M.A., Mateus, G.R., Festa, P., Resende, M.G.C.: GRASP with Path-Relinking for Data Clustering: A Case Study for Biological Data, vol. 6630 of Lecture Notes in Computer Science, pp. 410–420. Springer, Berlin (2011)
Fujisawa, K., Fukuda, M., Fojima, M., Nakata, K.: Numerical evaluation of SDPA (semidefinite programming algorithm). In: High performance optimization, pp. 267–301. Kluwer Academic Publishers, Berlin (2000)
Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)
Geoffrion, A.M., Graves, G.W.: Scheduling parallel production lines with changeover costs: practical applications of a quadratic assignment/LP approach. Oper. Res. 24, 595–610 (1976)
Glover, F.: Tabu search—Part I. ORSA J. Comput. 1, 190–206 (1989)
Glover, F.: Tabu search—Part II. ORSA J. Comput. 2, 4–32 (1990)
Glover, F.: Tabu search and adaptive memory programing—advances, applications and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer, Berlin (1996)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Berlin (1997)
Goëffon, A., Richer, J.-M., Hao, J.-K.: Progressive tree neighborhood applied to the maximum parsimony problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 5(1), 136–145 (2008)
Goemans, M.X., Williamson, D.P.: A new \(\frac{3}{4}\) approximation algorithm for the maximum satisfiability problem. SIAM J. Discr. Math. 7, 656–666 (1994)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)
Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston (1989)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)
Grippo, L., Palagi, L., Piacentini, M., Piccialli, V., Rinaldi, G.: Speedp: an algorithm to compute sdp bounds for very large max-cut instances. Math. Program. 136(2), 353–373 (2012)
Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett. 1, 23–27 (1981)
Hadlock, F.O.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comp. 4, 221–225 (1975)
Hansen, P., Mladenović, N.: Developments of variable neighborhood search. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 415–439. Kluwer Academic Publishers, Berlin (2002)
Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
Heffley, D.R.: The quadratic assignment problem: a note. Econometrica 40(6), 1155–1163 (1972)
Heffley, D.R.: Decomposition of the koopmansbeckmann problem. Reg. Sci. Urban Econ. 10(4), 571–580 (1980)
Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10, 673–696 (2000)
Hirsch, M.J., Meneses, C.N., Pardalos, P.M., Ragle, M.A., Resende, M.G.C.: A continuous GRASP to determine the relationship between drugs and adverse reactions. In: Seref, O., Kundakcioglu, O.E., Pardalos, P.M., (eds.), Data Mining, Systems Analysis, and Optimization in Biomedicine, vol. 953 of AIP Conference Proceedings, pp. 106–121. Springer, Berlin (2007)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)
Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. SIAM J. Comput. 12, 177–191 (2000)
Karloff, H., Zwick, U.: A \(\frac{7}{8}\)-approximation algorithm for MAX-3SAT. In: Proceedings of the 38th annual IEEE symposium on foundations of computer science, pp. 406–415 (1997)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984)
Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)
Krarup, J., Pruzan, P.M.: Computer-aided layout design. Math. Program. Study 9, 75–94 (1978)
Laguna, M., Martí, R.: A GRASP for coloring sparse graphs. Comput. Optim. Appl. 19, 165–178 (2001)
De Leone, R., Festa, P., Marchitto, E.: A bus driver scheduling problem: a new mathematical model and a GRASP approximate solution. J. Heuristics 17(4), 441–466 (2011)
De Leone, R., Festa, P., Marchitto, E.: Solving a bus driver scheduling problem with randomized multistart heuristics. Int. Trans. Oper. Res. 18(6), 707–727 (2011)
Li, Y., Pardalos, P.M.: Generating quadratic assignment test problems with known optimal permutations. Comput. Optim. Appl. 1, 163–184 (1992)
Li, Y., Pardalos, P.M., Resende, M.G.C.: A greedy randomized adaptive search procedure for the quadratic assignment problem. In Pardalos, P.M., Wolkowicz, H., (eds.), Quadratic Assignment and Related Problems, vol. 16 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pp. 237–261. American Mathematical Society, Providence (1994)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)
Loiola, E.M., Maia de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Euro. J. Oper. Res. 176, 657–690 (2007)
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT–25, 1–7 (1979)
Martí, R., Laguna, M.: Heuristics and meta-heuristics for 2-layer straight line crossing minimization. Discr. Appl. Math. 127(3), 665–678 (2003)
Mautor, T.: Contribution à la résolution des problèmes d’implanation: algorithmes séquentiels et parallèles pour l’affectation quadratique. PhD thesis, Université Pierre et Marie Curie, Paris, France. In: French (1992)
Mavridou, T., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: A GRASP for the biquadratic assignment problem. Euro. J. Oper. Res. 105, 613–621 (1998)
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
Nugent, C.E., Vollman, T.E., Ruml, J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16, 150–173 (1968)
Osman, I.H., Al-Ayoubi, B., Barake, M.: A greedy random adaptive search procedure for the weighted maximal planar graph problem. Comput. Ind. Eng. 45(4), 635–651 (2003)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-Hall, Upper Saddle River (1982)
Pardalos, P.M., Pitsoulis, P.S., Resende, M.G.C.: Algorithm 769: Fortran subroutines for approximate solution of sparse quadratic assignment problems using GRASP. ACM Trans. Math. Softw. 23, 196–208 (1997)
Pardalos, PM, Resende, M.G.C., (eds.): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)
Pardalos, P.M., Wolkowicz, H.: Quadratic assignment and related problems. In: Pardalos, P.M., Wolkowicz, H. (eds.) High Performance Optimization. American Mathematical Society, Providence (1994)
Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for \(0\)-\(1\) quadratic programming. J. Global Optim. 7, 51–73 (1995)
Pu, G.G., Chong, Z., Qiu, Z.Y., Lin, Z.Q., He, J.F.: A hybrid heuristic algorithm for HW-SW partitioning within timed automata. In: Proceedings of Knowledge-based Intelligent Information and Engineering Systems, vol. 4251 of Lecture Notes in Artificial Intelligence, pp. 459–466. Springer, Berlin (2006)
Resende, M.G.C., Feo, T.A.: A GRASP for satisfiability. In: Johnson, D.S., Trick, M.A., (eds.), Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Challenge, vol. 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pp. 499–520. American Mathematical Society, Providence (1996)
Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solution of weighted MAX-SAT problems using GRASP. In: Gu, J., Pardalos, P.M., (eds.), Satisfiability problems, vol. 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pp. 393–405. American Mathematical Society, Providence (1997)
Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Approximate solutions of weighted MAX-SAT problems using GRASP. In: Du, D.-Z., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 393–405. American Mathematical Society, Providence (1997)
Resende, M.G.C., Pitsoulis, L.S., Pardalos, P.M.: Fortran subroutines for computing approximate solutions of weighted MAX-SAT problems using GRASP. Discr. Appl. Math. 100, 95–113 (2000)
Resende, M.G.C., Ribeiro, C.C.: A GRASP for graph planarization. Networks 29, 173–189 (1997)
Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Euro. J. Oper. Res. 179, 775–787 (2007)
Robertson, A.J.: A set of greedy randomized adaptive local search procedure (GRASP) implementations for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145–164 (2001)
Roucairol, C.: Du sequentiel au parallele: la recherche arborescente et son application a la programmation quadratique en variables 0 et 1. PhD thesis, Université Pierre et Marie Curie, Paris, France. (In French) (1987)
Sahni, S., Gonzales, T.: P-complete approximation problems. J. Assoc. Comput. Mach. 23, 555–565 (1976)
Scriabin, M., Vergin, R.C.: Comparison of computer algorithms and visual based methods for plant layout. Manag. Sci. 22, 172–187 (1975)
Shor, N.Z.: Quadratic optimization problems. Soviet J. Comput. Syst. Sci. 25, 1–11 (1987)
Skorin-Kapov, J.: Tabu search applied to the quadratic assingnment problem. ORSA J. Comput. 2(1), 33–45 (1990)
Steinberg, L.: The backboard wiring problem: a placement algorithm. SIAM Rev. 3, 37–50 (1961)
Thonemann, U.W., Bölte, A.: An improved simulated annealing algorithm for the quadratic assignment problem. Technical report, Department of Production and Operations Research (1994)
Trevisan, L.: Approximating satisfiable satisfiability problems. Algorithmica 28(1), 145–172 (2000)
Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)
Wilhelm, M.R., Ward, T.L.: Solving quadratic assignment problems by simulated annealing. IIE Trans. 19(1), 107–119 (1987)
Yannakakis, M.: On the approximation of maximum Satisfiability. In: Proceedings of the Third ACM-SIAM symposium on discrete algorithms, pp. 1–9 (1992)
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Detailed tables for MAX-CUT, MAX-SAT and QAP
In this appendix, we report the detailed tables related to the comparison between NM-GRASP and the original version of GRASP for MAX-CUT, MAX-SAT and QAP. The first column of the three tables reports the name of the instance. The remaining columns report for each of the two approaches the average CPU time (Time), the average number of iterations (Iter), the average objective function value (Obj) with the standard deviation in brackets, and the best objective function value obtained over the ten runs (Best Obj) with the number of times the best value is obtained in brackets.
Appendix 2: Time to target-plots analysis on MAX-CUT problems
To plot the empirical distribution, we associate with the i-th sorted running time \((t_i)\) a probability \(p_i = (i - \frac{1}{2} )/100\), and plot the points \(z_i = (t_i , p_i )\), for \(i = 1,\ldots ,100\). For the instances g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50 we fixed as target values 2518, 2275, 2379, and 2925, respectively. These values represent a standard target for both heuristics. As we can see in Fig. 9, apart from the instance toruspm3-15-50 where for 3 runs the classical GRASP is better, we can notice that the NM-GRASP is always superior. It is able to reach the target value in less than 100 s CPU time for all the runs, while in several runs the classical GRASP needs more than 1000 s.
Figure 10 depicts the empirical distributions of the random variable time-to-target-solution-value using as target values 2532, 2293, 2382, and 2932, for the instances g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50, respectively. These values are the best objective function values found by the classical GRASP over 10 runs. As we can see from the plots, also in this case, the NM-GRASP is able to reach the target value in less than 100 s for all the runs. On the other hand, the classical GRASP failed to reach the target solution within the time limit in several runs, especially for instances g1250.n and G40.
By using instances g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50, we plot in Fig. 11 the empirical distributions of the random variable time-to-target-solution-value using as target values 2556, 2362, 2420, and 2980, respectively. These target values are the best cuts found by the NM-GRASP over 10 runs. In this case, the classical GRASP failed to reach the target solution within the time limit for all runs and all instances. On the contrary, the NM-GRASP is able to reach the target solution for all runs for instances g1250.n and sg3dl142000.mc.
Rights and permissions
About this article
Cite this article
De Santis, M., Festa, P., Liuzzi, G. et al. A nonmonotone GRASP. Math. Prog. Comp. 8, 271–309 (2016). https://doi.org/10.1007/s12532-016-0107-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-016-0107-9