Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

3DCC-MPNN: automated 3D reconstruction of corpus callosum based on modified PNN and marching cubes

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

The present study addresses the segmentation and the 3D reconstruction of the corpus callosum from MRI scans. Accurate segmentation of the corpus callosum is essential in order to enable its reconstruction and 3D visualization to facilitate early diagnosis. In fact, many studies have established a strong correlation between the shape of the corpus callosum and several pathological conditions. However, the segmentation is made difficult by regions of similar intensity within the MRI images. To overcome this challenge, we propose an automated method that relies mainly on a probabilistic neural network applied to superpixels. The proposed scheme involves segmenting the corpus callosum within the MRI scans, followed by the application of the marching cubes technique in order to generate 3D volumes. The effectiveness of the proposed method has been extensively validated on four challenging datasets (OASIS, ABIDE, MIRIAD, and SBD), and the obtained results demonstrate its superior performance compared to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The four datasets OASIS, ABIDE, MIRIAD, and SBD generated and analyzed during the current study are available respectively in https://www.oasis-brains.org/, https://www.datacatalog.med.nyu.edu/dataset/10452, https://www.nitrc.org/projects/miriad/ and https://www.brainweb.bic.mni.mcgill.ca/.

References

  • Adamson C, Beare R, Walterfang M, Seal M (2014) Software pipeline for midsagittal corpus callosum thickness profile processing. Neuroinformatics 12(4):595–614

    Article  Google Scholar 

  • Agarwal S, Yadav S, Singh K (2012) K-means versus k-means ++ clustering technique. In: 2012 students conference on engineering and systems

  • Agham ND, Chaskar UM (2021) Learning and non-learning algorithms for cuffless blood pressure measurement: a review. Med Biol Eng Comput 59:1201–1222

    Article  Google Scholar 

  • Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    Article  MathSciNet  Google Scholar 

  • Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput Appl 35(5):4099–4131

    Article  Google Scholar 

  • Arda KN, Akay S (2019) The relationship between corpus callosum morphometric measurements and age/gender characteristics: a comprehensive MR imaging study. J Clin Imaging Sci 9:1

    Article  Google Scholar 

  • Baazaoui A, Berrabah M, Barhoumi W, Zagrouba E (2016) Multimodal registration of PET/MR brain images based on adaptive mutual information. In: International conference on advanced concepts for intelligent vision systems, pp 361–372

  • Chandra A, Verma S, Raghuvanshi AS, Londhe ND, Bodhey N K, Subham K, Chandra A, Verma S, Raghuvanshi AS, Londhe ND, Bodhey NK, Subham K (2019) Corpus callosum segmentation from brain MRI and its possible application in detection of diseases. In: 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT)

  • Chandra A et al (2022) CCsNeT: automated corpus callosum segmentation using fully convolutional network based on U-Net. Biocybern Biomed Eng 42(1):187–203

    Article  Google Scholar 

  • Chandra A et al (2023) PCcS-RAU-Net: automated parcellated corpus callosum segmentation from brain MRI images using modified residual attention U-Net. Biocybern Biomed Eng 43(2):403–427

    Article  Google Scholar 

  • Ciecholewski M, Spodnik JH (2018) Semi-automatic corpus callosum segmentation and 3D visualization using active contour methods. Symmetry 10(11):589

    Article  Google Scholar 

  • Cover GS, Herrera WG, Bento MP, Appenzeller S, Rittner L (2018) Computational methods for corpus callosum segmentation on MRI: a systematic literature review. Comput Methods Programs Biomed 154:25–35

    Article  Google Scholar 

  • de Luis-Garcia R, Westin C-F, Alberola-López C (2011) Gaussian mixtures on tensor fields for segmentation: applications to medical imaging. Comput Med Imaging Graph 35(1):16–30

    Article  Google Scholar 

  • de Moura MTM, Zanetti MV, Duran FLS, Schaufelberger MS, Menezes PR, Scazufca M, Busatto GF, Serpa MH (2018) Corpus callosum volumes in the 5 years following the first-episode of schizophrenia: effects of antipsychotics, chronicity and maturation. NeuroImage Clin 18:932–942

    Article  Google Scholar 

  • Divya MM, Vishnu PT (2014) A hybrid technique for the automated segmentation of corpus callosum in midsagittal brain MRI. J Eng Res Appl 4(8):1–4

    Google Scholar 

  • El-Baz A, Elnakib A, Casanova MF, Gimel’farb G, Switala AE, Jordan D, Rainey S (2011) Accurate automated detection of autism related corpus callosum abnormalities. J Med Syst 35(5):929–939

    Article  Google Scholar 

  • Elnakib A, El-Baz A, Casanova MF, Gimel’farb G, Switala AE (2010) Image-based detection of corpus callosum variability for more accurate discrimination between dyslexic and normal brains. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro, pp 109–112

  • Emsell L, Adamson C, De Winter F-L, Billiet T, Christiaens D, Bouckaert F, Adamczuk K, Vandenberghe R, Seal ML, Sienaert P et al (2017) Corpus callosum macro and microstructure in late-life depression. J Affect Disord 222:63–70

    Article  Google Scholar 

  • Ezugwu AE, Agushaka JO, Abualigah L et al (2022) Prairie dog optimization algorithm. Neural Comput Appl 34(22):20017–20065

    Article  Google Scholar 

  • Gass T, Szekely G, Goksel O (2014) Simultaneous segmentation and multiresolution nonrigid atlas registration. IEEE Trans Image Process 23(7):2931–2943

    Article  MathSciNet  Google Scholar 

  • Giuliano A, Saviozzi I, Brambilla P, Muratori F, Retico A, Calderoni S (2018) The effect of age, sex and clinical features on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum Disorder: a case-control study. Eur J Neurosci 47(6):568–578

    Article  Google Scholar 

  • Herrera WG, Cover GS, Rittner L (2017) Pixel-based classification method for corpus callosum segmentation on diffusion-MRI. In: European congress on computational methods in applied sciences and engineering. Springer, London, pp 217–224

  • Hsu L-M, Wang S, Walton L et al (2021) 3D U-net improves automatic brain extraction for isotropic rat brain magnetic resonance imaging data. Front Neurosci 15:801008

    Article  Google Scholar 

  • Hu G, Zheng Y, Abualigah L et al (2023) DETDO: an adaptive hybrid dandelion optimizer for engineering optimization. Adv Eng Inform 57:102004

    Article  Google Scholar 

  • Içer S (2013) Automatic segmentation of corpus Collasum using Gaussian mixture modeling and fuzzy C means methods. Comput Methods Programs Biomed 112(1):38–46

    Article  Google Scholar 

  • Ishikawa H, Asada R, Shindo A, Suzuki K, Kawamoto E, Fujioka M, Imai H, Tomimoto H (2019) Susceptibility-weighted imaging: magnetic resonance imaging for the detection of microhemorrhages in the corpus callosum of Marchiafava-Bignami disease. Neurol Clin Neurosci 7(3):152

    Article  Google Scholar 

  • Jayakumar N, Hossain T, Zhang M (2023) SADIR: shape-aware diffusion models for 3D image reconstruction. In: International workshop on shape in medical imaging. Springer, Cham, pp 287–300

  • Jha S, Kumar R, Priyadarshini I et al (2019) Neutrosophic image segmentation with dice coefficients. Measurement 134:762–772

    Article  Google Scholar 

  • Jlassi A, ElBedoui K, Barhoumi W, Maktouf C (2019) Unsupervised method based on probabilistic neural network for the segmentation of corpus callosum in MRI scans. In: VISIGRAPP (4: VISAPP), pp 545–552

  • Jlassi A, ElBedoui K, Barhoumi W, Maktouf C (2020) Unsupervised method based on superpixel segmentation for corpus callosum parcellation in MRI scans. In: International conference on smart homes and health telematics. Springer, London, pp 114–125

  • Khan SU et al (2019) MRI imaging, comparison of MRI with other modalities, noise in MRI images and machine learning techniques for noise removal: a review. Curr Med Imaging 15(3):243–254

    Article  Google Scholar 

  • Kong Y, Wang D, Shi L, Hui SCN, Chu WCW (2014) Adaptive distance metric learning for diffusion tensor image segmentation. PLoS ONE 9(3):1

    Article  Google Scholar 

  • Lacerda ALT, Brambilla P, Sassi RB, Nicoletti MA, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2005) Anatomical MRI study of corpus callosum in unipolar depression. J Psychiatr Res 39(4):347–354

    Article  Google Scholar 

  • Lei T, Jia X, Zhang Y, He L, Meng H, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 26(3):3027–3041

    Article  Google Scholar 

  • Li Y, Wang H, Ahmed N, Mandal M (2017) Automated corpus callosum segmentation in midsagittal brain MR images. ICTACT J Image Video Process 8(1):1

    Article  Google Scholar 

  • Liu W, Ruan D (2015) A unified variational segmentation framework with a level-set based sparse composite shape prior. Phys Med Biol 60(5):1865

    Article  Google Scholar 

  • Lyra KP, Chaim KT, Leite CC, Park EJ, Andrade CS, Passarelli V, Valério RMF, Jorge CL, Castro LHM, Otaduy MCG (2017) Corpus callosum diffusion abnormalities in refractory epilepsy associated with hippocampal sclerosis, epilepsy research, vol 137. Elsevier, London, pp 112–118

    Google Scholar 

  • Mohamed NA, Zulkifley MA, Zaki WMDW, Hussain A (2019) An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach. Biomed Signal Process Control 53:101454

    Article  Google Scholar 

  • Narai A et al (2022) Movement-related artefacts (MR-ART) dataset of matched motion-corrupted and clean structural MRI brain scans. Sci Data 9(1):630

    Article  Google Scholar 

  • Nazem-Zadeh M-R, Saksena S, Babajani-Fermi A, Jiang Q, Soltanian-Zadeh H, Rosenblum M, Mikkelsen T, Jain R (2012) Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma. BMC Med Imaging 12(1):10

    Article  Google Scholar 

  • Ng TC, Choy SK, Lam SY et al (2023) Fuzzy superpixel-based image segmentation. Pattern Recogn 134:109045

    Article  Google Scholar 

  • Padmanabha SA, Saranya G (2023) Segmentation of the corpus callosum from brain magnetic resonance images using dual deep learning classifiers and optimized U-shaped neural networks. SN Comput Sci 5:1

    Article  Google Scholar 

  • Park G, Hong J, Lee J-M (2018) Corpus callosum segmentation using deep neural networks with prior information from multi-atlas images. Med Imaging Imaging Inform Healthc Res Appl 10579(2018):105791

    Google Scholar 

  • Platten M, Brusini I, Andersson O, Ouellette R, Piehl F, Wang C, Granberg T (2021) Deep learning corpus callosum segmentation as a neurodegenerative marker in multiple sclerosis. J Neuroimaging 31:493–500

    Article  Google Scholar 

  • Rai R, Das A, Dhal KG (2022) Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review. Evol Syst 13(6):889–945

    Article  Google Scholar 

  • Rajon DA, Bolch WE (2003) Marching cube algorithm: review and trilinear interpolation adaptation for image-based dosimetric models. Comput Med Imaging Graph 27(5):411–435

    Article  Google Scholar 

  • Rashid MHO, Mamun MA, Hossain MA, Uddin MP (2018) Brain tumor detection using anisotropic filtering, SVM classifier and morphological operation from MR images, brain tumor detection using anisotropic filtering. In: SVM classifier and morphological operation from MR images. IEEE, pp 1–4

  • Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DEJ (2008) The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage 39(4):1522–1532

    Article  Google Scholar 

  • Savio A, García-Sebastián M, Hernández C, Graña M, Villanúa J (2009) Classification results of artificial neural networks for alzheimer’s disease detection. In: International conference on intelligent data engineering and automated learning. Springer, London, pp 641–648

  • Sharif H, Khan RA (2019) A novel framework for automatic detection of autism: a study on corpus callosum and intracranial brain volume. Preprint arXiv:1903.11323

  • Shree NV, Kumar TNR (2018) Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Inform 5(1):23–30

    Article  Google Scholar 

  • Shrivastava S, Singh N, Mishra U, Chandra A, Verma S (2020a) Comparative study of deep learning models for segmentation of corpus callosum. In: 2020 4th international conference on computing methodologies and communication (ICCMC)

  • Shrivastava S, Singh N, Mishra U, Chandra A, Verma S (2020b) Comparative study of deep learning models for segmentation of corpus callosum. In: 2020 4th international conference on computing methodologies and communication (ICCMC). IEEE, pp 418–423

  • Singh R, Goel A, Raghuvanshi DK (2021) Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis Comput 37:2157–2171

    Article  Google Scholar 

  • Thara KS, Jasmine K (2016) Brain tumour detection in MRI images using PNN and GRNN. In: 2016 international conference on wireless communications, signal processing and networking (WiSPNET). IEEE, pp 1504–1510

  • Varma DR (2012) Managing DICOM images: tips and tricks for the radiologist. Indian J Radiol Imaging 22(1):4

    Article  Google Scholar 

  • Wang Z, Wang E, Zhu Y (2020) Image segmentation evaluation: a survey of methods. Artif Intell Rev 53(8):5637–5674

    Article  Google Scholar 

  • Wang H, Liu W, Xing W (2021) Video object segmentation via random walks on two-frame graphs comprising superpixels. J Vis Commun Image Represent 80:103293

    Article  Google Scholar 

  • Yu Q, Yang W, Liu Y, Wang H, Chen Z, Yan J (2018) Changes in the corpus callosum during the recovery of aphasia: a case report. Med Wolt Kluwer Health 97(24):1

    Google Scholar 

  • Zhang R, Jiang X, Chang M, Wei S, Tang Y, Wang F (2019a) White matter abnormalities of corpus callosum in patients with bipolar disorder and suicidal ideation. Ann General Psychiatry 18(1):1–7

    Article  Google Scholar 

  • Zhang W, Kong D, Wang S, Wang Z (2019b) 3D human pose estimation from range images with depth difference and geodesic distance. J Vis Commun Image Represent 59:272–282

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Jlassi.

Ethics declarations

Conflict of interest

All author declares that they have no Conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jlassi, A., Elbedoui, K., Barhoumi, W. et al. 3DCC-MPNN: automated 3D reconstruction of corpus callosum based on modified PNN and marching cubes. Evolving Systems 15, 1817–1843 (2024). https://doi.org/10.1007/s12530-024-09591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-024-09591-8

Keywords

Navigation