Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nature inspired optimization algorithms: a comprehensive overview

  • Review
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Nature performs complex tasks in a simple yet efficient way. Natural processes may seem straightforward from outside but are composed of several inherently complicated sub-processes. Inspired from nature, several Nature Inspired Optimization Algorithms (NIOAs) have been developed in recent years. The family of NIOAs is expanding rapidly. Therefore, the set of NIOAs became quite large and selecting an appropriate NIOA is a tedious job. Since each one of the algorithms offers something novel, the similarities and differences among them are necessary to be established so that the selection of an algorithm for a particular problem becomes relatively easy. Moreover, a problem needs to be mapped in a NIOA, requiring understanding of fundamental components of NIOAs. Tuning parameters and algorithm operators another important concern in NIOAs that need be addressed carefully for better performance of the algorithm. Our work distinguishes NIOAs on the basis of various criteria and discusses the building blocks of various algorithms to achieve aforementioned objectives. The purpose of present study is to analyze major concepts related to NIOAs such as fundamentals of NIOAs, comparison among them, advancements, etc. In order to explain the usage of components of NIOA, an illustrative example is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adler D (1993) Genetic algorithms and simulated annealing: a marriage proposal. In: IEEE international conference on neural networks, pp 1104–1109, IEEE

  • Afifi F, Anuar NB, Shamshirband S, Choo K-KR (2016) Dyhap: dynamic hybrid anfis-pso approach for predicting mobile malwared. PLoS One 11(9)

  • Alam M, Chatterjee S, Banka H (2016) A novel parallel search technique for optimization. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), pp 259–263, IEEE

  • Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int Trans Oper Res 20(1):1–48

    Article  MATH  Google Scholar 

  • Alba E, Talbi EG, Luque G, Melab N (2005) Metaheuristics and parallelism. Parallel metaheuristics: a new class of algorithms. Wiley, pp 79–104

  • Ali Husseinzadeh K (2015) A new metaheuristic for optimization: optics inspired optimization (oio). Comput Oper Res 55:99–125

    Article  MATH  Google Scholar 

  • Amir HG, Amir HA (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MATH  Google Scholar 

  • Angelov PP, Buswell RA (2003) Automatic generation of fuzzy rule-based models from data by genetic algorithms. Inf Sci 150(1–2):17–31

    Article  Google Scholar 

  • Angelov P, Guthke R (1997) A genetic-algorithm-based approach to optimization of bioprocesses described by fuzzy rules. Bioprocess Eng 16(5):299–303

    Article  Google Scholar 

  • Behdad M, Barone L, Bennamoun M, French T (2012) Nature-inspired techniques in the context of fraud detection. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1273–1290

    Article  Google Scholar 

  • Bello-Orgaz G, Hernandez-Castro J, Camacho D (2017) Detecting discussion communities on vaccination in twitter. Futur Gener Comput Syst 66:125–136

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308

  • Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MATH  Google Scholar 

  • Bo-Yang Q, Zhu YS, Jiao YC, Wu MY, PonnuthuraiN S, JingJ L (2018) A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems. Swarm Evol Comput 38:1–11

    Article  Google Scholar 

  • Cantú VH, Azzaro-Pantel C, Ponsich A (2021) Constraint-handling techniques within differential evolution for solving process engineering problems. Appl Soft Comput 108:107442

    Article  MATH  Google Scholar 

  • Casey MC, Damper RI (2010) Special issue on biologically-inspired information fusion. Inf Fusion 11(1):2–3

  • Cheng S, Shi Y, Qin Q, Bai R (2013) Swarm intelligence in big data analytics. In International Conference on Intelligent Data engineering and automated learning, pp 417–426, Springer, New York

  • Choraś M, Kozik R (2018) Machine learning techniques for threat modeling and detection. In: Security and Resilience in Intelligent Data-Centric Systems and Communication Networks, pp 179–192. Elsevier

  • Chou J-S, Ngo N-T (2016) Smart grid data analytics framework for increasing energy savings in residential buildings. Autom Constr 72:247–257

    Article  Google Scholar 

  • Christian B, Jakob P, Raidl Günther R, Andrea R (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

  • Costa KAP, Pereira LAM, Nakamura RYM, Pereira CR, Papa JP, Falcão AX (2015) A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks. Inf Sci 294:95–108

    Article  MATH  Google Scholar 

  • Cuevas E, Sossa H et al (2013) A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Syst Appl 40(4):1213–1219

    Article  Google Scholar 

  • Cui Z, Xue F, Cai X, Cao Y, Wang G, Chen J (2018) Detection of malicious code variants based on deep learning. IEEE Trans Industr Inf 14(7):3187–3196

    Article  Google Scholar 

  • Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. In: Foundations of computational intelligence volume 3, pp 23–55. Springer, New York

  • De Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In Proceedings of GECCO, volume 2000, pp 36–39

  • Del Ser J, Osaba E, Molina D, Yang X-S, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello CA, Francisco H (2019) Bio-inspired computation Where we stand and what’s next. Swarm Evolut Comput 48:220–250

  • DelSer J, Osaba E, Sanchez-Medina JJ, Fister I (2019) Bioinspired computational intelligence and transportation systems: a long road ahead. IEEE Trans Intell Transp Syst 21(2):466–495

    Article  Google Scholar 

  • Diez-Olivan A, DelSer J, Galar D, Sierra B (2019) Data fusion and machine learning for industrial prognosis Trends and perspectives towards industry 40. Inf Fusion 50:92–111

  • Dilek S, Çakır H, Aydın M (2015) Applications of artificial intelligence techniques to combating cyber crimes: a review. arXiv:1502.03552

  • Diogo Pereira Puchta E, Siqueira HV, dos SantosKaster M (2019) Optimization tools based on metaheuristics for performance enhancement in a gaussian adaptive pid controller. IEEE Trans Cybern 50(3):1185–1194

    Article  Google Scholar 

  • Dorigo M, Gambardella LM (1997) Ant colonies for the travelling salesman problem. Biosystems 43(2):73–81

    Article  Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Magn 1(4):28–39

  • Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp 1470–1477, IEEE

  • Duarte A, Sánchez Á, Fernández F, Montemayor AS (2006) Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic. Pattern Recogn Lett 27(11):1239–1251

    Article  Google Scholar 

  • EdmundK B, Michel G, Matthew H, Graham K, Gabriela O, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

  • Eiben AE, Aarts EHL, Van Hee KM (1990) Global convergence of genetic algorithms: a markov chain analysis. In: International Conference on Parallel Problem Solving from Nature, pp 3–12, Springer, New York

  • Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  Google Scholar 

  • Fernández-Vargas JA, Bonilla-Petriciolet A, Rangaiah GP, Fateen S-EK (2016) Performance analysis of stopping criteria of population-based metaheuristics for global optimization in phase equilibrium calculations and modeling. Fluid Phase Equilib 427:104–125

    Article  Google Scholar 

  • Fister Jr I, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv:1307.4186

  • Formato RA (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2007), pp 221–238. Springer, New York

  • Gálvez A, Fister I, Osaba E, Del Ser J, Iglesias A (2018) Automatic fitting of feature points for border detection of skin lesions in medical images with bat algorithm. In: International Symposium on Intelligent and Distributed Computing, pp 357–368. Springer

  • Gamarra C, Guerrero JM (2015) Computational optimization techniques applied to microgrids planning: a review. Renew Sustain Energy Rev 48:413–424

  • Gen M, Zhang W, Lin L, Yun YS (2017) Recent advances in hybrid evolutionary algorithms for multiobjective manufacturing scheduling. Comput Ind Eng 112:616–633

  • Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pp 2093–2229, Springer, New York

  • Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor Artif Intell 25(4):503–526

  • Goldberg DE (2006) Genetic algorithms. Pearson Education India

  • Gonzalez-Pardo A, Jung JJ, Camacho D (2017) Aco-based clustering for ego network analysis. Futur Gener Comput Syst 66:160–170

    Article  Google Scholar 

  • Gupta GP, Jha S (2018) Integrated clustering and routing protocol for wireless sensor networks using cuckoo and harmony search based metaheuristic techniques. Eng Appl Artif Intell 68:101–109

    Article  Google Scholar 

  • Hammouche K, Diaf M, Siarry P (2010) A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng Appl Artif Intell 23(5):676–688

    Article  Google Scholar 

  • Hussain A, Cambria E (2018) Semi-supervised learning for big social data analysis. Neurocomputing 275:1662–1673

    Article  Google Scholar 

  • Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuristic research: a comprehensive survey. Artif Intell Rev 52(4):2191–2233

    Article  Google Scholar 

  • İlker BŞ, Shu-Chering F (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25(3):263–282

    Article  MATH  Google Scholar 

  • Iqbal R, Doctor F, More B, Mahmud S, Yousuf U (2018) Big data analytics: computational intelligence techniques and application areas. Technological Forecasting and Social Change, pp 119253

  • Jalaleddin Mousavirad S, Ebrahimpour-Komleh H (2017) Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. Evol Intel 10(1–2):45–75

    Article  Google Scholar 

  • James JQ, Li VOK (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627

    Article  Google Scholar 

  • Jino Ramson SR, Lova Raju K, Vishnu S, Anagnostopoulos T (2019) Nature inspired optimization techniques for image processing-a short review. In Nature inspired optimization techniques for image processing-a short review. In. Springer, New York, pp 113–145

    Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    Article  MATH  Google Scholar 

  • Kaur S, Mahajan R (2018) Hybrid meta-heuristic optimization based energy efficient protocol for wireless sensor networks. Egypt Inf J 19(3):145–150

  • Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol 2, pp 1507–1512, IEEE

  • Kennedy James, Eberhart Russell (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, pp 1942–1948. IEEE

  • Kirkpatrick S, Daniel Gelatt C, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

  • Krömer P, Platoš J, Snášel V (2014) Nature-inspired meta-heuristics on modern gpus: state of the art and brief survey of selected algorithms. Int J Parallel Prog 42(5):681–709

    Article  Google Scholar 

  • Lam AYS, Li VOK (2012) Chemical reaction optimization: a tutorial. Mem Comput 4(1):3–17

  • Lewis R (2008) A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30(1):167–190

    Article  MATH  Google Scholar 

  • Li WD, Ong SK, Nee AYC (2002) Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int J Prod Res 40(8):1899–1922

    Article  MATH  Google Scholar 

  • Mahdavi S, Shiri ME, Rahnamayan S (2015) Metaheuristics in large-scale global continues optimization: A survey. Inf Sci 295:407–428

    Article  Google Scholar 

  • Mauro B, Janusz K (2009) Tuning metaheuristics: a machine learning perspective, vol 197, Springer, New York

  • Mohammadi FG, Amini MH, Arabnia HR (2020) Applications of nature-inspired algorithms for dimension reduction: Enabling efficient data analytics. In: Optimization, Learning, and Control for Interdependent Complex Networks, pp 67–84, Springer, New York

  • MohammadReza Jabbarpour, Houman Zarrabi, RashidHafeez Khokhar, Shahaboddin Shamshirband (2018) Kim-Kwang Raymond Choo. Applications of computational intelligence in vehicle traffic congestion problem a survey. Soft Comput 22(7):2299–2320

  • Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, vol 953, pp 162–173. American Institute of Physics

  • Narasimhan H (2009) Parallel artificial bee colony (pabc) algorithm. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp 306–311, IEEE

  • Pellegrini P, Birattari M (2006) The relevance of tuning the parameters of metaheuristics. In: Technical Report. Technical report, IRIDIA, Université Libre de Bruxelles

  • Pinto Alex R, Carlos M, Araújo G, Francisco V, Paulo P (2014) An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Inf Fusion 15:90–101

  • PraveenKumar D, Tarachand A, SekharaRao AC (2019) Machine learning algorithms for wireless sensor networks: a survey. Inf Fusion 49:1–25

  • Premaratne U, Samarabandu J, Sidhu T (2009) A new biologically inspired optimization algorithm. In: 2009 international conference on industrial and information systems (ICIIS), pp 279–284, IEEE

  • Pritesh S, Ravi S, Kulkarni AJ, Patrick S (2021) Metaheuristic algorithms in industry 4. 0. CRC Press, New York

  • Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: International conference on unconventional computation, pp 163–177, Springer, New York

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rinnooy Kan AHG (2012) Machine scheduling problems: classification, complexity and computations. Springer, New York

    Google Scholar 

  • Rodríguez-Molina A, Mezura-Montes E, Villarreal-Cervantes MG, Aldape-Pérez M (2020) Multi-objective meta-heuristic optimization in intelligent control: a survey on the controller tuning problem. Appl Soft Comput 93

  • Serani A, Diez M (2017) Dolphin pod optimization. In: International Workshop on Machine Learning, Optimization, and Big Data, pp 50–62. Springer, New York

  • Serdar U, Melih NS, Gebrail B (2021) Novel metaheuristic-based tuning of pid controllers for seismic structures and verification of robustness. J Build Eng 33

  • Shafi K, Abbass HA (2007) Biologically-inspired complex adaptive systems approaches to network intrusion detection. Inf Secur Tech Rep 12(4):209–217

    Article  Google Scholar 

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cogn Comput 7(6):706–714

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Sivakumar R, Marcus K (2012) Diagnose breast cancer through mammograms using eabco algorithm. Int J Eng Technol 4(5):302–307

  • Sörensen K (2015) Metaheuristics-the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Article  MATH  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MATH  Google Scholar 

  • Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Amsterdam

  • Tamura K, Yasuda K (2011) Primary study of spiral dynamics inspired optimization. IEEJ Trans Electr Electron Eng 6(S1):S98–S100

    Article  Google Scholar 

  • Tamura K, Yasuda K (2017) The spiral optimization algorithm: Convergence conditions and settings. IEEE Trans Syst Man Cybern Syst

  • Tsai C-W, Tsai P-W, Pan J-S, Chao H-C (2015) Metaheuristics for the deployment problem of wsn: a review. Microprocess Microsyst 39(8):1305–1317

  • Vercellis C (2009) Business intelligence: data mining and optimization for decision making. Wiley, Amsterdam

    Book  MATH  Google Scholar 

  • Verma P, Sanyal K, Srinivasan D, Swarup KS, Mehta R (2018) Computational intelligence techniques in smart grid planning and operation: a survey. In: 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp 891–896. IEEE

  • Vincent G, Mirko K, Rasson JP (1994) Simulated annealing: A proof of convergence. IEEE Trans Pattern Anal Mach Intell 16(6):652–656

    Article  Google Scholar 

  • Wari E, Zhu W (2016) A survey on metaheuristics for optimization in food manufacturing industry. Appl Soft Comput 46:328–343

    Article  Google Scholar 

  • Woeginger Gerhard J (2003) Exact algorithms for np-hard problems: a survey. Springer, New York, pp 185–207

    MATH  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Xin-She Y, Suash D (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC), pp 210–214. IEEE

  • Yang X-S, Deb S, Fong S (2014) Metaheuristic algorithms: optimal balance of intensification and diversification. Appl Math Inf Sci 8(3):977

  • Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Engineering computations

  • Yang X-S, He X (2016) Nature-inspired optimization algorithms in engineering: overview and applications. In Nature-inspired computation in engineering, pp 1–20, Springer, New York

  • Yang Xin-She (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, pp 240–249, Springer, New York

  • Yang X-S (2020) Nature-inspired optimization algorithms: challenges and open problems. J Comput Sci 46

  • Yang X-S et al (2008) Firefly algorithm. Nat-Inspired Metaheuristic Algorithms 20:79–90

  • Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press, London

    Google Scholar 

  • Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

  • Zhao D, Dai Y, Zhang Z (2011) Computational intelligence in urban traffic signal control: A survey. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4):485–494

    Article  Google Scholar 

  • Zielinski K, Laur R (2008) Stopping criteria for differential evolution in constrained single-objective optimization. In Advances in differential evolution, pp 111–138, Springer, New York

  • ZongWoo G, Joong HK, Gobichettipalayam Vasudevan L (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nadeem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Nadeem, M. & Banka, H. Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems 14, 141–156 (2023). https://doi.org/10.1007/s12530-022-09432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-022-09432-6

Keywords

Navigation