Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Prick the filter bubble: A novel cross domain recommendation model with adaptive diversity regularization

  • Research Paper
  • Published:
Electronic Markets Aims and scope Submit manuscript

Abstract

Recommender systems have been an important tool to filter and tailor the best content for online users. Classical recommender system methods typically face the filter bubble problem where users effectively get isolated from a diversity of viewpoints or content. How to provide relevant and diversified goods for online users has become a challenging problem. In this study, we develop a cross-domain matrix factorization model based on adaptive diversity regularization to address the above challenges. We leverage collective MF model to transfer users’ rating pattern, utilize social tags to transfer semantic information between domains, and design a novel adaptive diversity regularization to improve recommendation performance. Comprehensive experiments on real cross-domain datasets demonstrate the effectiveness of our model. Results show that our model can achieve a decent balance between recommendation accuracy and diversity, and the recommendation polarity can also be alleviated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.douban.com/

References

  • Adomavicius, G., & Kwon, Y. (2014). Optimization-based approaches for maximizing aggregate recomme-ndation diversity. INFORMS Journal on Computing, 26(2), 351–369. https://doi.org/10.1287/ijoc.2013.0570.

  • Amrollahi, A. (2019). Burst the filter bubble: Towards an integrated tool. In proceedings of the 30th Australasian conference on information Systems (pp. 12-20). ACIS.

  • Amrollahi, A. (2021). A conceptual tool to eliminate filter bubbles in social networks. Australasian Journal of Information Systems, 25, 1–16. https://doi.org/10.3127/ajis.v25i0.2867.

    Article  Google Scholar 

  • Ashkan, A., Kveton, B., Berkovsky, S., & Wen, Z. (2015). Optimal greedy diversity for recommendation. In proceeding of the 24th international conference on artificial intelligence (pp. 1742-1748). IJCAI.

  • Bag, S., Ghadge, A., & Tiwari, M. K. (2019). An integrated recommender system for improved accuracy and aggregate diversity. Computers & Industrial Engineering, 130, 187–197. https://doi.org/10.1016/j.cie.2019.02.028.

  • Barraza-Urbina, A., Heitmann, B., Hayes, C., & Carrillo-Ramos, A. (2015). Xplodiv: An exploitation-expl-oration aware diversification approach for recommender systems. In proceedings of the 28th international Florida artificial intelligence research society conference (pp. 483-488). AAAI.

  • Bell, R. M., & Koren, Y. (2007). Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In proceedings of the 7th IEEE international conference on data mining (pp. 43-52). IEEE. https://doi.org/10.1109/ICDM.2007.90.

  • Bellogín, A., Cantador, I., & Castells, P. (2010). A study of heterogeneity in recommendations for a social music service. In proceedings of the 1st international workshop on information heterogeneity and fusion in recommender Systems (pp. 1-8). HETREC. https://doi.org/10.1145/1869446.1869447.

  • Boim, R., Milo, T., & Novgorodov, S. (2011). Diversification and refinement in collaborative filtering rec-ommender. In proceedings of the 20th ACM international conference on information and knowledge management (pp. 739-744). CIKM. https://doi.org/10.1145/2063576.2063684.

  • Borodin, A. (2008). Loop-free Markov chains as determinantal point processes. Annales de I'IHP Probabilites et Statistiques, 44(1), 19–28. https://doi.org/10.1214/07-AIHP115.

    Article  Google Scholar 

  • Cantador, I., Fernández-Tobías, I., Berkovsky, S., & Cremonesi, P. (2015). Cross-domain recommender systems. In recommender systems handbook (pp. 1-35). Springer. 10.1007/978-0-387-85820-3_1.

  • Chakraborty, A., Ali, M., Ghosh, S., Ganguly, N., & Gummadi, K. P. (2017). On quantifying knowledge segregation in society. Social and Information Networks, 2, 1–4. https://doi.org/10.18122/b2sk5h.

    Article  Google Scholar 

  • Chandar, P., & Carterette, B. (2013). Preference based evaluation measures for novelty and diversity. In proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval (pp. 413-422). ACM. https://doi.org/10.1145/2484028.2484094.

  • Chen, L., Zhang, G., & Zhou, E. (2018). Fast greedy map inference for determinantal point process to improve recommendation diversity. In proceeding of the 32nd conference on neural information processing Systems (pp. 5622-5633). NIPS. https://doi.org/10.5555/3327345.3327465.

  • Cheng, P., Wang, S., Ma, J., Sun, J., & Xiong, H. (2017). Learning to recommend accurate and diverse items. In proceedings of the 26th international conference on world wide web (pp. 183-192). ACM. https://doi.org/10.1145/3038912.3052585.

  • Chitra, U., & Musco, C. (2020). Analyzing the impact of filter bubbles on social network polarization. In proceedings of the 13th international conference on web search and data mining (pp. 115-123). ACM. https://doi.org/10.1145/3336191.3371825.

  • Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher, S., & MacKinnon, I. (2008). Novelty and diversity in information retrieval evaluation. In proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval (pp. 659-666). ACM. https://doi.org/10.1145/1390334.1390446.

  • Di Noia, T., Rosati, J., Tomeo, P., & Di Sciascio, E. (2017). Adaptive multi-attribute diversity for recommender systems. Information Sciences, 382, 234–253. https://doi.org/10.1016/j.ins.2016.11.015.

    Article  Google Scholar 

  • Dutton, W. H., Reisdorf, B., Dubois, E., & Blank, G. (2017). Social shaping of the politics of internet search and networking: Moving beyond filter bubbles, echo chambers, and fake news. Political Communication, 1–22. https://doi.org/10.1080/10584609.2021.1910887.

  • Eady, G., Nagler, J., Guess, A., Zilinsky, J., & Tucker, J. A. (2019). How many people live in political bu- bbles on social media? Evidence from linked survey and twitter data. Sage Open, 9(1), 1–21. https://doi.org/10.1177/2158244019832705.

    Article  Google Scholar 

  • Elkahky, A. M., Song, Y., & He, X. (2015). A multi-view deep learning approach for cross domain user modeling in recommendation systems. In proceedings of the 24th international conference on world wide web (pp. 278-288). ACM. https://doi.org/10.1145/2736277.2741667.

  • Fernández-Tobías, I., Cantador, I., Tomeo, P., Anelli, V. W., & Di Noia, T. (2019). Addressing the user cold start with cross-domain collaborative filtering: Exploiting item metadata in matrix factorization. User Modeling & User-Adapted Interaction, 29(2), 443–486. https://doi.org/10.1007/s11257-018-9217-6.

    Article  Google Scholar 

  • Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298–320. https://doi.org/10.1093/poq/nfw006.

    Article  Google Scholar 

  • Fleder, D., & Hosanagar, K. (2009). Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity. Management Science, 55(5), 697–712. https://doi.org/10.1287/mnsc.1080.0974.

    Article  Google Scholar 

  • Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., & Guo, J. (2013). Cross-domain recommendation via cluster-level latent factor model. In joint European conference on machine learning and knowledge discovery in databases (pp. 161-176). Springer. https://doi.org/10.1007/978-3-642-40991-2_11.

  • Garimella, K., Morales, G. D. F., Gionis, A., & Mathioudakis, M. (2018). Quantifying controversy on social media. ACM Transactions on Social Computing, 1(1), 1–27. https://doi.org/10.7717/peerj-cs.26.

    Article  Google Scholar 

  • Ge, Y., Zhao, S., Zhou, H., Pei, C., Sun, F., Ou, W., & Zhang, Y. (2020). Understanding echo chambers in e-commerce recommender systems. In proceedings of the 43rd international ACM SIGIR conference on Research and Development in information retrieval (pp. 2261-2270). ACM. https://doi.org/10.1145/3397271.3401431.

  • Gharahighehi, A., & Vens, C. (2021). Diversification in session-based news recommender Systems. Information retrieval, 2, 1-15. Arxiv-2102.03265.

  • Gogna, A., & Majumdar, A. (2017). DiABlO: Optimization based design for improving diversity in recommender system. Information Sciences, 378, 59–74. https://doi.org/10.1016/j.ins.2016.10.043.

    Article  Google Scholar 

  • Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. In linear algebra (pp. 134-151). Springer. https://doi.org/10.1007/978-3-662-39778-7_10.

  • Guo, G., Zhang, J., & Yorke-Smith, N. (2015). Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In proceedings of the 29th AAAI conference on artificial Intelligence (pp. 123-129). AAAI. https://doi.org/10.5555/2887007.288702510.5555/2887007.2887025.

  • Hannak, A., Sapiezynski, P., Molavi Kakhki, A., Krishnamurthy, B., Lazer, D., Mislove, A., & Wilson, C. (2013). Measuring personalization of web search. In proceedings of the 22nd international conference on world wide web (pp. 527-538). ACM. https://doi.org/10.1145/2488388.2488435.

  • Heinrich, B., Hopf, M., Lohninger, D., Schiller, A., & Szubartowicz, M. (2019). Data quality in recommender systems: The impact of completeness of item content data on prediction accuracy of recommender systems. Electronic Markets, 31, 1–21. https://doi.org/10.1007/s12525-019-00366-7.

    Article  Google Scholar 

  • Hu, G., Zhang, Y., & Yang, Q. (2018). Conet: Collaborative cross networks for cross-domain recommendation. In proceedings of the 27th ACM international conference on information and knowledge management (pp. 667-676). ACM. https://doi.org/10.1145/3269206.3271684.

  • Huang, L., Zhao, Z.-L., Wang, C.-D., Huang, D., & Chao, H.-Y. (2019). LSCD: Low-rank and sparse cross-domain recommendation. Neurocomputing, 366, 86–96. https://doi.org/10.1016/j.neucom.2019.07.091.

    Article  Google Scholar 

  • Huang, Y., Zhou, L., Zeng, Z., Duan, L., & Wang, J. (2020). An empirical study on the phenomenon of information narrowing in the context of personalized recommendation. Journal of Physics: Conference Series, 1631(1), 012109. https://doi.org/10.1088/1742-6596/1631/1/012109.

    Article  Google Scholar 

  • Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(4), 422–446. https://doi.org/10.1145/582415.582418.

    Article  Google Scholar 

  • Ji, L. (2020). How to crack the information cocoon room under the background of intelligent media. International Journal of Social Science and Education Research, 3(3), 169–173.

    Google Scholar 

  • Jin, Y., Dong, S., Cai, Y., & Hu, J. (2020). RACRec: Review aware cross-domain recommendation for fully-cold-start user. IEEE Access, 8, 55032–55041. https://doi.org/10.1109/ACCESS.2020.2982037.

    Article  Google Scholar 

  • Kang, E. J., Hur, C. Y., & Choi, Y. S. (2020). CrowdForest: A visualization tool for opinion sharing based-on semantic figurative metaphors. In proceedings of the 25th international conference on intelligent user interfaces companion (pp. 97-98). ACM. https://doi.org/10.1145/3379336.3381486.

  • Karlsen, R., Steen-Johnsen, K., Wollebæk, D., & Enjolras, B. (2017). Echo chamber and trench warfare dynamics in online debates. European Journal of Communication, 32(3), 257–273. https://doi.org/10.1177/0267323117695734.

  • Kim, H.-N., Saddik, E., & Abdulmotaleb. (2013). Exploring social tagging for personalized community recommendations. User Modeling & User-Adapted Interaction, 23(2–3), 249–285. https://doi.org/10.1007/s11257-012-9130-3.

    Article  Google Scholar 

  • Knijnenburg, B. P., Sivakumar, S., & Wilkinson, D. (2016). Recommender systems for self-actualization. Proceedings of the 10th ACM conference on recommender Systems (pp. 11-14). ACM. https://doi.org/10.1145/2959100.2959189.

  • Köhler, S., Wöhner, T., & Peters, R. (2016). The impact of consumer preferences on the accuracy of collaborative filtering recommender systems. Electronic Markets, 26(4), 369–379. https://doi.org/10.1007/s12525-016-0232-3.

    Article  Google Scholar 

  • Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative filtering model. In proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 426-434). ACM. https://doi.org/10.1145/1401890.1401944.

  • Lee, D., & Hosanagar, K. (2014). Impact of recommender systems on sales volume and diversity. In 35th international conference on information Systems: Building a better world through information Systems (pp. 1-15). AIS.

  • Li, B., Yang, Q., & Xue, X. (2009a). Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In twenty-first international joint conference on artificial intelligence (pp. 2052-2057). AIS. https://doi.org/10.5555/1661445.1661773.

  • Li, B., Yang, Q., & Xue, X. (2009b). Transfer learning for collaborative filtering via a rating-matrix generative model. In proceedings of the 26th annual international conference on machine learning (pp. 617-624). ACM. https://doi.org/10.1145/1553374.1553454.

  • Lu, Z., Wang, H., Mamoulis, N., Tu, W., & Cheung, D. W. (2017). Personalized location recommendation by aggregating multiple recommenders in diversity. GeoInformatica, 21(3), 459–484. https://doi.org/10.1007/s10707-017-0298-x.

    Article  Google Scholar 

  • Lunardi, G. M., Machado, G. M., Maran, V., & de Oliveira, J. P. M. (2020). A metric for filter bubble measurement in recommender algorithms considering the news domain. Applied Soft Computing, 97(1), 106771. https://doi.org/10.1016/j.asoc.2020.106771.

    Article  Google Scholar 

  • Man, T., Shen, H., Jin, X., & Cheng, X. (2017). Cross-domain recommendation: An embedding and mapping approach. In proceedings of the twenty-sixth international conference on artificial intelligence (pp. 2464-2470). ACM. https://doi.org/10.24963/ijcai.2017/343.

  • Medo, M., Zhang, Y.-C., & Zhou, T. (2009). Adaptive model for recommendation of news. Europhysics Letters, 88(3), 38005. https://doi.org/10.1209/0295-5075/88/38005.

    Article  Google Scholar 

  • Mirbakhsh, N., & Ling, C. X. (2015). Improving top-n recommendation for cold-start users via cross-domain information. ACM Transactions on Knowledge Discovery from Data, 9(4), 1–19. https://doi.org/10.1145/2724720.

    Article  Google Scholar 

  • Mnih, A., & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. Advances in Neural Information Processing Systems, 20, 1257–1264. https://doi.org/10.5555/2981562.2981720.

    Article  Google Scholar 

  • Mueller, D. C. (2003). Public choice III. Cambridge University Press. https://doi.org/10.1017/CBO9780511813771.

  • Nagulendra, S., & Vassileva, J. (2014). Understanding and controlling the filter bubble through interactive visualization: A user study. In proceedings of the 25th ACM conference on hypertext and social media (pp. 107-115). ACM. https://doi.org/10.1145/2631775.2631811.

  • Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014). Exploring the filter bubble: The effect of using recommender systems on content diversity. In proceedings of the 23rd international conference on world wide web (pp. 677-686). ACM. https://doi.org/10.1145/2566486.2568012.

  • Nikolov, D., Lalmas, M., Flammini, A., & Menczer, F. (2019). Quantifying biases in online information exposure. Journal of the Association for Information Science Technology, 70(3), 218–229. https://doi.org/10.1002/asi.24121.

  • Nikolov, D., Oliveira, D. F., Flammini, A., & Menczer, F. (2015). Measuring online social bubbles. Peer J Computer Science, 1, e38. https://doi.org/10.7717/peerj-cs.38.

    Article  Google Scholar 

  • Pan, W., Xiang, E. W., Liu, N. N., & Yang, Q. (2010). Transfer learning in collaborative filtering for sparsity reduction. In proceedings of the AAAI conference on artificial intelligence (pp. 230-235). AAAI. https://doi.org/10.5555/2898607.2898644.

  • Pariser, E. (2011). The filter bubble: What the internet is hiding from you. Penguin UK. https://doi.org/10.3139/9783446431164.

  • Pilászy, I., Zibriczky, D., & Tikk, D. (2010). Fast als-based matrix factorization for explicit and implicit feedback datasets. Proceedings of the fourth ACM conference on recommender systems (pp. 71-78). ACM. https://doi.org/10.1145/1864708.1864726.

  • Qin, L., & Zhu, X. (2013). Promoting diversity in recommendation by entropy regularizer. In proceedings of the twenty-third international joint conference on artificial intelligence (pp. 2698-2704). ACM.

  • Rastegarpanah, B., Gummadi, K. P., & Crovella, M. (2019). Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. Proceedings of the twelfth ACM international conference on web search and data mining (pp. 231-239). ACM. https://doi.org/10.1145/3289600.3291002.

  • Resnick, P., Garrett, R. K., Kriplean, T., Munson, S. A., & Stroud, N. J. (2013). Bursting your (filter) bubble: Strategies for promoting diverse exposure. In proceedings of the 2013 conference on computer supported cooperative work companion (pp. 95-100). ACM. https://doi.org/10.1145/2441955.2441981.

  • Ridgway, R. (2017). Against a personalisation of the self. Ephemera: Theory & Politics in Organization, 17(2), 377–379.

    Google Scholar 

  • Rowland, F. (2011). The filter bubble: What the internet is hiding from you. Portal: Libraries the Academy, 11(4), 1009–1011. https://doi.org/10.1353/pla.2011.0036.

    Article  Google Scholar 

  • Schomakers, E.-M., Lidynia, C., & Ziefle, M. (2020). All of me? Users’ preferences for privacy-preserving data markets and the importance of anonymity. Electronic Markets, 30(3), 649–665. https://doi.org/10.1007/s12525-020-00404-9.

    Article  Google Scholar 

  • Severin, W. J., & Tankard, J. W. (1997). Communication theories: Origins, methods, and uses in the mass media. Longman.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    Article  Google Scholar 

  • Shevade, S., & Murty, M. (2019). Neural cross-domain collaborative filtering with shared entities. Information Retrieval, 1, 729–745. https://doi.org/10.1007/978-3-030-67658-2_42.

    Article  Google Scholar 

  • Singh, A. P., & Gordon, G. J. (2008). Relational learning via collective matrix factorization. In proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 650-658). ACM. https://doi.org/10.1145/1401890.1401969.

  • Su, J., Sharma, A., & Goel, S. (2016). The effect of recommendations on network structure. In proceedings of the 25th international conference on world wide web (pp. 1157-1167). ACM. https://doi.org/10.1145/2872427.2883040.

  • Sun, J., Song, J., Jiang, Y., Liu, Y., & Zhu, M. (2020). Leveraging cross domain recommendation models to alleviate filter bubble problems. Proceedings of the 26th Americas conference on information Systems (pp. 1-10). AMCIS.

  • Symeonidis, P., Coba, L., & Zanker, M. (2019). Counteracting the filter bubble in recommender systems: Novelty-aware matrix factorization. Intelligenza Artificiale, 13(1), 37–47. https://doi.org/10.3233/IA-190017.

    Article  Google Scholar 

  • Tang, J., Gao, H., & Liu, H. (2012). mTrust: Discerning multi-faceted trust in a connected world. In proceedings of the fifth ACM international conference on web search and data mining (pp. 93-102). ACM. https://doi.org/10.1145/2124295.2124309.

  • Taramigkou, M., Bothos, E., Christidis, K., Apostolou, D., & Mentzas, G. (2013). Escape the bubble: Guided exploration of music preferences for serendipity and novelty. In proceedings of the 7th ACM conference on recommender systems (pp. 335-338). ACM. https://doi.org/10.1145/2507157.2507223.

  • Thonet, T., Cabanac, G., Boughanem, M., & Pinel-Sauvagnat, K. (2017). Users are known by the company they keep: Topic models for viewpoint discovery in social networks. In proceedings of the 2017 ACM on conference on information and knowledge management (pp. 87-96). ACM. https://doi.org/10.1145/3132847.3132897.

  • Tk, A. K., George, K., & Thomas, J. P. (2015). An empirical approach to detection of topic bubbles in tweets. In 2015 IEEE/ACM 2nd international symposium on big data computing (BDC) (pp. 31-40). IEEE. https://doi.org/10.1109/BDC.2015.36.

  • Vargas, S., Baltrunas, L., Karatzoglou, A., & Castells, P. (2014). Coverage, redundancy and size-awareness in genre diversity for recommender systems. In proceedings of the 8th ACM conference on recommender systems (pp. 209-216). ACM. https://doi.org/10.1145/2645710.2645743.

  • Vargas, S., & Castells, P. (2013). Exploiting the diversity of user preferences for recommendation. In proceedings of the 10th conference on open research areas in information retrieval (pp. 129-136). ACM. https://doi.org/10.5555/2491748.2491776.

  • Wang, X., Peng, Z., Wang, S., Philip, S. Y., Fu, W., Xu, X., Hong, X. J. K., & Systems, I. (2019). CDLFM: Cross-domain recommendation for cold-start users via latent feature mapping. Knowledge and Information Systems, 62, 1723–1750. https://doi.org/10.1007/s10115-019-01396-5.

    Article  Google Scholar 

  • Wardle, C., & Williams, A. (2010). Beyond user-generated content: A production study examining the ways in which UGC is used at the BBC. Media, Culture Society, 32(5), 781–799. https://doi.org/10.1177/0163443710373953.

  • Wartena, C., Brussee, R., & Wibbels, M. (2009). Using tag co-occurrence for recommendation. In 2009 ninth international conference on intelligent Systems design and applications (pp. 273-278). IEEE. https://doi.org/10.1109/ISDA.2009.130.

  • Wasilewski, J., & Hurley, N. (2016). Incorporating diversity in a learning to rank recommender system. In Preceedings of the twenty-ninth international Florida artificial intelligence research society conference (pp. 572-578). AAAI.

  • Wasilewski, J., & Hurley, N. (2018). Intent-aware item-based collaborative filtering for personalised diversification. In proceedings of the 26th conference on user modeling, adaptation and personalization (pp. 81-89). ACM. https://doi.org/10.1145/3209219.3209234.

  • Wu, Q., Liu, Y., Miao, C., Zhao, B., Zhao, Y., & Guan, L. (2019). PD-GAN: Adversarial learning for personalized diversity-promoting recommendation. In proceedings of the Twenth-eighth international joint conference on artificial intelligence (pp. 3870-3876). IJCAI. https://doi.org/10.24963/ijcai.2019/ 537.

  • Wu, W., Chen, L., & Zhao, Y. (2018). Personalizing recommendation diversity based on user personality. User Modeling & User-Adapted Interaction, 28(3), 237–276. https://doi.org/10.1007/s11257-018-9205-x.

    Article  Google Scholar 

  • Xia, H., Wei, X., An, W., Zhang, Z. J., & Sun, Z. (2020). Design of electronic-commerce recommendation systems based on outlier mining. Electronic markets, 1-17. https://doi.org/10.1007/s12525-020-00435-2.

  • Xue, H.-J., Dai, X., Zhang, J., Huang, S., & Chen, J. (2017). Deep matrix factorization models for recommender Systems. In proceedings of the Twenth-sixth international joint conference on artificial intelligence (pp. 3203-3209). IJCAI. https://doi.org/10.24963/ijcai.2017/447.

  • Zhang, C., Yu L., Wang, Y., Shah, C., & Zhang, X. (2017). Collaborative user network embedding for social recommender Systems. In proceedings of the 17th SIAM international conference on data mining (pp. 381-389). SIAM. https://doi.org/10.1137/1.9781611974973.43.

  • Zhang, H., Wei, S., Hu, X., Li, Y., & Xu, J. (2020). On accurate POI recommendation via transfer learning. Distributed Parallel Databases, 38(3), 585–599. https://doi.org/10.1007/s10619-020-07299-7.

    Article  Google Scholar 

  • Zhang, M., & Hurley, N. (2008). Avoiding monotony: Improving the diversity of recommendation lists. In proceedings of the 2008 ACM conference on recommender systems (pp. 123-130). ACM. https://doi.org/10.1145/1454008.1454030.

  • Zhang, Y., Abbas, H., & Sun, Y. (2019). Smart e-commerce integration with recommender systems. Electronic Markets, 29(2), 219–220. https://doi.org/10.1007/s12525-019-00346-x.

    Article  Google Scholar 

  • Zhao, C., Li, C., Xiao, R., Deng, H., & Sun, A. (2020). CATN: Cross-domain recommendation for cold-start users via aspect transfer network. In proceedings of the 43rd international ACM SIGIR conference on Research and Development in information retrieval (pp. 229-338). ACM. https://doi.org/10.1145/3397271.3401169.

  • Zhao, J., Lui, J. C., Towsley, D., Guan, X., & Zhou, Y. (2011). Empirical analysis of the evolution of follower network: A case study on Douban. In 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 924-929). IEEE. https://doi.org/10.1109/INFCOMW.2011.5928945.

  • Zhong, E., Fan, W., & Yang, Q. (2014). User behavior learning and transfer in composite social networks. ACM Transactions on Knowledge Discovery from Data, 8(1), 1–32. https://doi.org/10.1145/2556613.

    Article  Google Scholar 

  • Zhou, J. T., Pan, S. J., & Tsang, I. W. (2019). A deep learning framework for hybrid heterogeneous transfer learning. Artificial Intelligence, 275, 310–328. https://doi.org/10.1016/j.artint.2019.06.001.

    Article  Google Scholar 

  • Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R., & Zhang, Y.-C. (2010). Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences, 107(10), 4511–4515. https://doi.org/10.1073/pnas.1000488107.

    Article  Google Scholar 

  • Zimmer, F., Scheibe, K., Stock, M., & Stock, W. (2019). Echo chambers and filter bubbles of fake news in social media: Man-made or produced by algorithms? In 2019 Hawaii University international conferences in arts, humanities, social sciences & education (pp. 1-22). HUIC. https://doi.org/10.3886/E135024V2.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (71872060, 91846201, 71521001, 71722010, 91746302, 72071069, 71801069, 71804174 and 71802068), the Fundamental Research Funds for the Central Universities of China (JZ2020HGPA0113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Responsible Editor: Alex Zarifis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Song, J., Jiang, Y. et al. Prick the filter bubble: A novel cross domain recommendation model with adaptive diversity regularization. Electron Markets 32, 101–121 (2022). https://doi.org/10.1007/s12525-021-00492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12525-021-00492-1

Keywords

JEL classification

Navigation