Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Prior Knowledge-Based Automatic Object-Oriented Hierarchical Classification for Updating Detailed Land Cover Maps

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Automatic information extraction from optical remote sensing images is still a challenge for large-scale remote sensing applications. For instance, artificial sample collection cannot achieve an automatic remote sensing imagery classification. Based on this, this paper resorts to the technologies of change detection and transfer learning, and further proposes a prior knowledge-based automatic hierarchical classification approach for detailed land cover updating. To establish this method, an automatic sample collection scheme for object-oriented classification is presented. Unchanged landmarks are first located. Prior knowledge of these categories from previously interpreted thematic maps is then transferred to the new target task. The knowledge is utilized to rebuild the relationship between landmark classes and their spatial-spectral features for land cover updating. A series of high-resolution remote sensing images are experimented for validating the effectiveness of the proposed approach in rapidly updating detailed land cover. The results show that, with the assistance of preliminary thematic maps, the approach can automatically obtain reliable object samples for object-oriented classification. Detailed land cover information can be excellently updated with a competitive accuracy, which demonstrates the practicability and effectiveness of our method. It creates a novel way for employing the technologies of knowledge discovery into the field of information extraction from optical remote sensing images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barros, R. C., & Basgalupp, M. P. (2012). A Survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 291–312.

    Article  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  • Briem, G. J., Benediktsson, J. A., & Sveinsson, J. R. (2002). Multiple classifiers applied to multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2291–2299.

    Article  Google Scholar 

  • Burr, S. (2009). Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin Madison.

  • Carlos, N. S. J., & Alex, A. F. (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1), 31–72.

    Google Scholar 

  • Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. International Journal of Remote Sensing, 21(6–7), 1093–1114.

    Article  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Dai, W. Y., Chen, Y. Q., Xue, G. R., Yang, Q, & Yu, Y. (2008). Translated learning: transfer learning across different feature spaces. Processing of 2008 Advances in Neural Information Processing Systems 12 (NIPS 2008), Canada, pp. 353–360.

  • Demir, B., Minello, L., & Bruzzone, L. (2014). Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1272–1284.

    Article  Google Scholar 

  • Fardanesh, M. T., & Ersoy, O. K. (1998). Classification accuracy improvement of neural network classifiers by using unlabeled data. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 1020–1025.

    Article  Google Scholar 

  • Foody, G. M., Mcculloch, M. B., & Yates, W. B. (1995). Classification of remote sensing data by an artificial neural network: issues related to training data characteristics. Photogrammetric Engineering and Remote Sensing, 61(4), 391–401.

    Google Scholar 

  • Foody, G. M., & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1336–1343.

    Article  Google Scholar 

  • Franklin, S. E., & Wulder, M. A. (2002). Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Photogrammetric Engineering and Remote Sensing, 26(2), 173–205.

    Google Scholar 

  • Friedl, M. A., Sulla-Menashe, D., Tan, B. A., Schneider, N., Ramankutty, A. S., & Huang, X. (2010). MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182.

    Article  Google Scholar 

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300.

    Article  Google Scholar 

  • Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric Engineering and Remote Sensing, 60(3), 331–337.

    Google Scholar 

  • Hinton, G., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Article  Google Scholar 

  • Homer, C. C., Huang, L., Yang, B. W., & Coan, M. (2004). Development of a 2001 national landcover database for the United States. Photogrammetric Engineering and Remote Sensing, 70(7), 829–840.

    Article  Google Scholar 

  • Jerzy, S, & Szymon, W. (2008). Selective pre-processing of imbalanced data for improving classification performance. In Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2008), Italy, pp. 283–292.

  • Liu, Q. S., & Metaxas, D. N. (2008). Unifying subspace and distance metric learning with bhattacharyya coefficient for image classification. Proceedings of the Emerging Trends in Visual Computing (ETVC 2008), France, pp. 254–267.

  • Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., & Merchant, J. W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6), 1303–1330.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2407.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A Survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Luo, J. C., Wang, Q., Ma, J. H., Zhou, C. H., & Liang, Y. (2002). The EM-based maximum likelihood classifier for remote sensing data. Acta Geodaetica et Cartographica Sinica, 31(3), 234–239 (in Chinese with English abstract).

    Google Scholar 

  • Marceau, D. J., Howarth, P. J., Dubois, J. M., & Gratton, D. J. (1990). Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 513–519.

    Article  Google Scholar 

  • Maulik, U., & Chakraborty, D. (2011). A self-trained ensemble with semi-supervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognition, 44(3), 615–623.

    Article  Google Scholar 

  • Mennis, J., & Guo, D. (2009). Spatial data mining and geographic knowledge discovery: An introduction. Computers, Environment and Urban Systems, 33(6), 403–408.

    Article  Google Scholar 

  • Nielsen, A. A. (2007). The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transaction on Image Processing, 16(2), 463–478.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4), 554–565.

    Article  Google Scholar 

  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  • Richards, J. A., & Jia, X. P. (2012). Remote sensing digital image analysis: An introduction (4th ed.). Berlin: Springer.

    Google Scholar 

  • Togi, T., Khiruddin, B. A., & Lim, H. S. (2013). Comparison of pixel and object based approaches using Landsat data for land use and land cover classification in coastal zone of Medan, Sumatera. International Journal of Tomography and Simulation, 24(3), 86–94.

    Google Scholar 

  • Tsai, F., & Philpot, W. D. (2002). A derivative-aided hyperspectral image analysis system for land-cover classification. IEEE Transactions on Geoscience and Remote Sensing, 40(2), 416–425.

    Article  Google Scholar 

  • Tso, B., & Mather, P. (2009). Classification methods for remote sensing data (2nd ed.). New York: Taylor & Francis.

    Book  Google Scholar 

  • Tuia, D., Ratle, F., Pacifici, F., Kanevski, M. F., & Emery, W. J. (2009). Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2218–2232.

    Article  Google Scholar 

  • Wardlow, B. D., & Egbert, S. L. (2003). A state-level comparative analysis of the GAP and NLCD land-cover data sets. Photogrammetric Engineering and Remote Sensing, 69(12), 1387–1397.

    Article  Google Scholar 

  • Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2002). Distance metric learning with application to clustering with side-information. Proceedings of the 15th Advances in Neural Information Processing Systems (NIPS 2002), USA, pp. 521–528.

  • Zhou, Z. H., Zhang, M. L., Huang, S. J., & Li, Y. F. (2012). Multi-instance multi-label learning. Artificial Intelligence, 176(1), 2291–2320.

    Article  Google Scholar 

  • Zhu, X. J. (2008). Semi-supervised learning literature survey. Computer Sciences Technical Report 1530, University of Wisconsin Madison.

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 41271367; 41301438), the Project of the International Science & Technology Cooperation Program of China (Grant No. 2010DFA92720-25), the Key Programs of the Chinese Academy of Sciences (Grant No. KZZD-EW-07-02), the National High Technology Research and Development Program of China (863 Program, Grant No. 2013AA12A401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Wu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Luo, J., Xia, L. et al. Prior Knowledge-Based Automatic Object-Oriented Hierarchical Classification for Updating Detailed Land Cover Maps. J Indian Soc Remote Sens 43, 653–669 (2015). https://doi.org/10.1007/s12524-014-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-014-0446-9

Keywords

Navigation