Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Synchrony and Reciprocity: Key Mechanisms for Social Companion Robots in Therapy and Care

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Studies and concepts for social companion robots in therapy and care exist, however, they often lack the integration of convincing behavioral and social key mechanisms which enable a positive and successfull interaction experience. In this article we argue that synchrony and reciprocity are two key mechanisms of human interaction which affect both in the behavioral level (movements) and in the social level (relationships). Given that both a change in movement behavior and social behavior are an objective in the contexts of aging-in-place, neurocognitive and neurophysical rehabilitation, and depression, these key mechanisms should also be included in the interaction with social companion robots in therapy and care. We give an overview on the two concepts ranging from a social neuroscience over a behavioral towards a sociological perspective and argue that both concepts affect each other and are up to now only marginally applied in human–robot interaction. To support this claim, we provide a survey on existing social companion robots for aging-in-place (pet robots and household robots), neurocognitive impairments (autism and dementia), neurophysical impairments (brain injury, cerebral palsy, and Parkinson’s disease), and depression. We emphasize to what extend synchrony and reciprocity are already included into the respective applications. Finally, based on the survey and the previous argumentation on the importance of synchrony and reciprocity, we provide a discussion about potential future steps for the inclusion of these concepts to social companion robots in therapy and care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The cross-spectral coherence is also called mean phase coherence or synchronization index (SI).

  2. For example, the robot explicitly asks “can I return the favour?”.

  3. http://www.epsrc.ac.uk/research/ourportfolio/themes/engineering/activities/principlesofrobotics/.

References

  1. De Houwer J (2006) What are implicit measures and why are we using them. The handbook of implicit cognition and addiction. pp 11–28

  2. Wheatley T, Kang O, Parkinson C, Looser CE (2012) From mind perception to mental connection: synchrony as a mechanism for social understanding. Soc Personal Psychol Compass 6(8):589–606

    Article  Google Scholar 

  3. Mori M, MacDorman KF, Kageki N (2012) The uncanny valley [from the field]. Robot Autom Mag IEEE 19(2):98–100

    Article  Google Scholar 

  4. Wykowska A, Chellali R, Al-Amin MM, Müller HJ (2012) Does observing artificial robotic systems influence human perceptual processing in the same way as observing humans? In: Social robotics. Springer, pp 327–337

  5. Bury MR (1987) Social aspects of rehabilitation. Int J Rehabil Res 10(5):25–29

    Article  Google Scholar 

  6. Dautenhahn K (1997) I could be you: the phenomenological dimension of social understanding. Cybern Syst 28(5):417–453

    Article  Google Scholar 

  7. Steels L (2003) Evolving grounded communication for robots. Trends Cogn Sci 7(7):308–312

    Article  Google Scholar 

  8. Mutlu B, Shiwa T, Kanda T, Ishiguro H, Hagita N (2009) Footing in human-robot conversations: how robots might shape participant roles using gaze cues. In: Proceedings of the 4th ACM/IEEE international conference on Human robot interaction. ACM, pp 61–68

  9. Walters ML, Dautenhahn K, Te Boekhorst R, Koay KL, Syrdal DS, Nehaniv CL (2009) An empirical framework for human–robot proxemics

  10. Cetina KK (1997) Sociality with objects. Theory Cult Soc 14(4):1–30

    Article  Google Scholar 

  11. Reeves B, Nass C (1996) The media equation: how people treat computers, and new media like real people and places. Cambridge University Press, Cambridge

    Google Scholar 

  12. Issartel J, Marin L, Cadopi M (2007) Unintended interpersonal co-ordination: “can we march to the beat of our own drum?”. Neurosci Lett 411(3):174–179

    Article  Google Scholar 

  13. Schmidt RC, Richardson MJ (2008) Dynamics of interpersonal coordination. In: Fuchs A, Jirsa VK (eds) Coordination: neural, behavioral and social dynamics, understanding complex systems. Springer, Berlin, pp 281–308

    Chapter  Google Scholar 

  14. Richardson MJ, Marsh KL, Isenhower RW, Goodman JRL, Schmidt RC (2007) Rocking together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci 26(6):867–891

    Article  Google Scholar 

  15. van Ulzen NR, Lamoth CJC, Daffertshofer A, Semin GR, Beek PJ, Van Ulzen NR, Semin R (2008) Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neurosci Lett 432(2):88–93

    Article  Google Scholar 

  16. Lorenz T, Mörtl A, Vlaskamp B, Schubö A, Hirche S (July 2011) Synchronization in a goal-directed task: human movement coordination with each other and robotic partners. In: 20th IEEE international symposium on robot and human interactive communication, Atlanta (GA), pp 198–203

  17. Lorenz T, Vlaskamp BNS, Kasparbauer AM, Mörtl A, Hirche S (2014) Dyadic movement synchronization while performing incongruent trajectories requires mutual adaptation. Front Hum Neurosci 8:1–10

    Google Scholar 

  18. Mörtl A, Lorenz T, Vlaskamp BNS, Gusrialdi A, Schubö A, Hirche S (2012) Modeling inter-human movement coordination: synchronization governs joint task dynamics. Biol Cybern 106(4–5):241–259

    Article  MATH  MathSciNet  Google Scholar 

  19. Mörtl A, Lorenz T, Hirche S (2014) Rhythm patterns interaction—synchronization behavior for human–robot joint action. PLoS One 9(4):e95195

    Article  Google Scholar 

  20. Ivry RB, Richardson TC (2002) Temporal control and coordination: the multiple timer model. Brain Cognit 48(1):117–132

    Article  Google Scholar 

  21. Ramenzoni VC, Davis TJ, Riley MA, Shockley K, Baker AA (2011) Joint action in a cooperative precision task: nested processes of intrapersonal and interpersonal coordination. Exp Brain Res ( Experimentelle Hirnforschung. Expérimentation cérébrale) 211(3—-4):447–457

    Article  Google Scholar 

  22. Varlet M, Marin L, Lagarde J, Bardy BG (2011) Social postural coordination. J Exp Psychol 37(2):473–483

    Google Scholar 

  23. Vesper C, van der Wel RPRD, Knoblich G, Sebanz N (2011) Making oneself predictable: reduced temporalvariability facilitates joint action coordination. Exp Brain Res (Experimentelle Hirnforschung. Expérimentationcérébrale) 211(3—-4):517–530

    Article  Google Scholar 

  24. Clark R (2012) Social and physical coordination. Interact Stud 13(1):66–79

    Article  Google Scholar 

  25. Iacoboni M (2009) Imitation, empathy, and mirror neurons. Annu Rev Psychol 60:653–670

    Article  Google Scholar 

  26. Billard AG (2002) Imitation. In: Arbib MA (ed) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 566–569

    Google Scholar 

  27. Meltzoff AN (2005) Imitation and other minds: the “Like Me” hypothesis. In: Hurley S, Chater N (eds) Perspectives on imitation: from neuroscience to social science, vol 2, 2nd edn. MIT Press, Cambridge, pp 55–77

    Google Scholar 

  28. Bekkering H, Wohlschläger A, Gattis M (2000) Imitation of gestures in children is goal-directed. Q J Exp Psychol, Hum Exp Psychol 53(1):153–164

    Article  Google Scholar 

  29. Cialdini RB (2009) Influence: science and practice. Pearson Education, Boston

    Google Scholar 

  30. Sebanz N, Knoblich G, Prinz W (2003) Representing others’ actions: just like one’s own? Cognition 88(3):B11–B21

    Article  Google Scholar 

  31. Brass M, Bekkering H, Prinz W (2001) Movement observation affects movement execution in a simple response task. Acta Psychol 106(1–2):3–22

    Article  Google Scholar 

  32. Kilner JM, Paulignan Y, Blakemore S-J (2003) An interference effect of observed biological movement on action. Curr Biol 13(6):522–525

    Article  Google Scholar 

  33. Kilner J, De Hamilton AFC, Blakemore SJ (2007) Interference effect of observed human movement on action is due to velocity profile of biological motion. Soc Neurosci 2(3–4):158–166

    Article  Google Scholar 

  34. Stanley J, Gowen E, Miall RC (2007) Effects of agency on movement interference during observation of a moving dot stimulus. J Exp Psychol 33(4):915–926

    Google Scholar 

  35. Koenig N, Takayama L, Matarić M (2010) Communication and knowledge sharing in human–robot interaction and learning from demonstration. Neural Netw 23(8–9):1104–1112

    Article  Google Scholar 

  36. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

    Article  Google Scholar 

  37. Sebanz N, Knoblich G (2009) Prediction in joint action: what, when, and where. Top Cogn Sci 1(2):353–367

    Article  Google Scholar 

  38. Brown EC, Brüne M (2012) The role of prediction in social neuroscience. Front Hum Neurosci 6(May):147

    Google Scholar 

  39. Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 1:515–526

    Article  Google Scholar 

  40. Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21(1):37–46

    Article  Google Scholar 

  41. Rizzolatti G (2005) The mirror neuron system and its function in humans. Anat Embryol 210(5–6):419–421

    Article  Google Scholar 

  42. Reed CL (2002) What is the body schema? In: Meltzoff AN, Prinz W (eds) The imitative mind: development, evolution, and brain bases, chapter 13. Cambridge University Press, Cambridge, pp 233–244

  43. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):e79

    Article  Google Scholar 

  44. Hickok G (2009) Eight problems for the mirror neuron theory of action understanding in monkeys and humans. J Cogn Neurosci 21(7):1229–1243

    Article  Google Scholar 

  45. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(1999):2526–2528

    Article  Google Scholar 

  46. Mahon BZ, Caramazza A (2008) A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J Physiol Paris 102:59–70

    Article  Google Scholar 

  47. Semin GR (2007) Grounding communication: synchronization. In: Kruglansky AW, Higgins ET (eds) Social psychology: handbook of basic principles. The Guilford Press, New York, pp 630–649

    Google Scholar 

  48. Valdesolo P, Ouyang J, DeSteno D (2010) The rhythm of joint action: synchrony promotes cooperative ability. J Exp Soc Psychol 46(4):693–695

    Article  Google Scholar 

  49. Chartrand TL, Bargh JA (1999) The chameleon effect: the perception-behavior link and social interaction. J Personal Soc Psychol 76(6):893–910

    Article  Google Scholar 

  50. Miles LK, Nind LK, Macrae CN (2009) The rhythm of rapport: interpersonal synchrony and social perception. J Exp Soc Psychol 45(3):585–589

    Article  Google Scholar 

  51. Valdesolo P, Desteno D (2011) Synchrony and the social tuning of compassion. Emotion 11(2):262–266

    Article  Google Scholar 

  52. Hove MJ, Risen JL (2009) It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cognit 27(6):949–960

    Article  Google Scholar 

  53. Wiltermuth SS, Heath C (2009) Synchrony and cooperation. Psychol Sci 20(1):1–5

    Article  Google Scholar 

  54. Krämer NC, Eimler S, von der Pütten A, Payr S (2011) Theory of companions: what can theoretical models contribute to applications and understanding of human-robot interaction? Appl Artif Intell 25(6):474–502

    Article  Google Scholar 

  55. Nass C, Steuer J, Tauber ER (1994) Computers are social actors. In: Proceedings of the SIGCHI conference on human factors in computing systems. CHI ’94, New York, ACM, pp 72–78

  56. Marin L, Issartel J, Chaminade T (2009) Interpersonal motor coordination: from human–human to human robot interactions. Interact Stud 10(3):479–504

    Article  Google Scholar 

  57. Hogeveen J, Obhi SS (2012) Social interaction enhances motor resonance for observed human actions. J Neurosci 32(17):5984–5989

    Article  Google Scholar 

  58. Gazzola V, Rizzolatti G, Wicker B, Keysers C (2007) The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. NeuroImage 35(4):1674–1684

    Article  Google Scholar 

  59. Oberman LM, McCleery JP, Ramachandran VS, Pineda JA (2007) EEG evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. Neurocomputing 70(13–15):2194–2203

    Article  Google Scholar 

  60. Press C (2011) Action observation and robotic agents: learning and anthropomorphism. Neurosci Biobehav Rev 35(6):1410–1418

    Article  Google Scholar 

  61. Oztop E, Franklin DW, Chaminade T, Cheng G (2005) Human-humanoid interaction: is a humanoid robot perceived as a human? Int J Hum Robot 2(4):537–559

    Article  Google Scholar 

  62. Chaminade T (December 2011) A social cognitive neuroscience stance human-robot interactions. In: The international conference SKILLS 2011, vol 1, p 4

  63. Atkeson CG, Hale JG, Pollick F, Riley M, Kotosaka S, Schaul S, Shibata T, Tevatia G, Ude A, Vijayakumar S, Kawato E, Kawato M (2000) Using humanoid robots to study human behavior. IEEE Intell Syst 15(4):46–56

    Article  Google Scholar 

  64. Chaminade T, Franklin DW, Oztop E, Cheng G (2005) Motor interference between humans and humanoid robots: effect of biological and artificial motion. In: Proceedings of the 4nd international conference on development and learning, pp 96–101

  65. Chaminade T, Rosset D, Da Fonseca D, Nazarian B, Lutcher E, Cheng G, Deruelle C (2012) How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Front Hum Neurosci 6(May):103

    Google Scholar 

  66. Lorenz T, Mörtl A, Hirche S (March 2013) Movement synchronization fails during non-adaptive human-robot interaction. In: 2013 8th ACM/IEEE international conference on human-robot interaction (HRI), pp 189–190

  67. Maeda Y, Takahashi A, Hara T, Arai T (2003) Human–robot cooperative rope turningan example of mechanical coordination through rhythm entrainment. Adv Robot 17(1):67–78

    Article  Google Scholar 

  68. Broadbent E, Stafford R, MacDonald BA (2009) Acceptance of healthcare robots for the older population: review and future directions. Int J Soc Robot 1:319

    Article  Google Scholar 

  69. Revel A, Andry P (2009) Emergence of structured interactions: from a theoretical model to pragmatic robotics. Neural Netw 22(2):116–125

    Article  Google Scholar 

  70. Hasnain SK., Gaussier P, Mostafaoui G (October 2012) Synchrony as a tool to establish focus of attention for autonomous robots. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 2423–2428

  71. Grand C, Mostafaoui G, Hasnain SK, Gaussier P (2014) Synchrony detection as a reinforcement signal for learning. Proc Soc Behav Sci 126:82–91

    Article  Google Scholar 

  72. Alissandrakis A, Nehaniv CL, Dautenhahn K (2003) Synchrony and perception in robotic imitation across embodiments. In: Proceedings 2003 IEEE international symposium on computational intelligence in robotics and automation. Computational intelligence in robotics and automation for the new millennium (Cat. No.03EX694) 2:923–930

  73. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51(5):347–356

    Article  MathSciNet  MATH  Google Scholar 

  74. Bethel CL, Murphy RR (2010) Review of human studies methods in hri and recommendations. Int J Soc Robot 2(4):347–359

    Article  Google Scholar 

  75. Delaherche E, Chetouani M, Mahdhaoui A, Saint-Georges C, Viaux S, Cohen D (2012) Interpersonal synchrony: a survey of evaluation methods across disciplines. IEEE Trans Affect Comput 3(3):349–365

    Article  Google Scholar 

  76. Riley MA, Van OGC (2005) Tutorials in contemporary nonlinear methods for the behavioral sciences. National Science Foundation

  77. Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P (2007) Measuring synchronization in coupled model systems: a comparison of different approaches. Phys D 225(1):29–42

    Article  MathSciNet  MATH  Google Scholar 

  78. Schmidt RC, O’Brien B (1997) Evaluating the dynamics of unintended interpersonal coordination. Ecol Psychol 9(3):189–206

    Article  Google Scholar 

  79. Fuchs A, Jirsa VK (eds) (2008) Coordination: neural, behavioral and social dynamics. Springer, Berlin

    Google Scholar 

  80. Shockley K, Butwill M, Zbilut JP, Webber CL (2002) Cross recurrence quantification of coupled oscillators. Phys Lett A 305(1–2):59–69

    Article  MATH  Google Scholar 

  81. Richardson MJ, Lopresti-Goodman S, Mancini M, Kay B, Schmidt RC (2008) Comparing the attractor strength of intra- and interpersonal interlimb coordination using cross-recurrence analysis. Neurosci Lett 438(3):340–345

    Article  Google Scholar 

  82. Lammer L, Huber A, Weiss A, Vincze M (2014) Mutual care: how older adults react when they should help their care robot. In: AISB2014: Proceedings of the 3rd international symposium on new frontiers in human–robot interaction

  83. Dautenhahn K, Woods S, Kaouri C, Walters ML, Koay KL, Werry L (2005) What is a robot companion-friend, assistant or butler? In: 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS 2005), pp 1192–1197

  84. Dario P, Paul FMJ, Verschure TP, Cheng G, Sandini G, Cingolani R, Dillmann R, Floreano D, Leroux C, MacNeil S et al (2011) Robot companions for citizens. Proc Comput Sci 7:47–51

    Article  Google Scholar 

  85. Tapus A, Maja M, Scassellatti B et al (2007) The grand challenges in socially assistive robotics. IEEE Robot Autom Mag 14(1):1

    Article  Google Scholar 

  86. Feil-Seifer D, Mataric MJ (2011) Socially assistive robotics. IEEE Robot Autom Mag 18(1):24–31

    Article  Google Scholar 

  87. Terrence F, Illah N, Kerstin D (2003) A survey of socially interactive robots. Robot Auton Syst 42(3–4):143–166

    MATH  Google Scholar 

  88. Mitchell WD, Alford A, Pack RT, Rogers T, Peters RA, Kazuhiko K (1998) Toward socially intelligent service robots. Appl Artif Intell 12(7–8):729–766

    Google Scholar 

  89. Shibata T, Mitsui T, Wada K, Touda A, Kumasaka T, Tagami K, Tanie K (2001) Mental commit robot and its application to therapy of children. In: Proceedings 2001 IEEE/ASME international conference on advanced intelligent mechatronics, 2001, vol 2, pp 1053–1058

  90. Libin AV, Libin EV (2004) Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proc IEEE 92:1789–1803

    Article  Google Scholar 

  91. Stiehl WD, Lieberman J, Breazeal C, Basel L, Lalla L, Wolf M (2005) Design of a therapeutic robotic companion for relational, affective touch. In: IEEE international workshop on robot and human interactive communication, 2005. ROMAN 2005, pp 408–415

  92. Graf B, Reiser U, Haegele M, Mauz K, Klein P (2009) Robotic home assistant care-o-bot 3-product vision and innovation platform. In: 2009 IEEE workshop on advanced robotics and its social impacts (ARSO), pp 139–144

  93. Schroeter C, Mueller S, Volkhardt M, Einhorn E, Huijnen C, van den Heuvel H, van Berlo A, Bley A, Gross HM (2013) Realization and user evaluation of a companion robot for people with mild cognitive impairments. In: IEEE international conference on robotics and automation (ICRA), 2013, pp 1153–1159

  94. Fischinger D, Einramhof P, Wohlkinger W, Papoutsakis K, Mayer P, Panek P, Koertner T, Hofmann S, Argyros A, Vincze M, Weiss A, Gisinger C (2013) Hobbit—the mutual care robot

  95. Lammer L, Huber A, Zagler W, Vincze M (2011) Mutual-care: users will love their imperfect social assistive robots. In: Work-in-progress Proceedings of the international conference on social robotics, pp 24–25

  96. Fasola J, Mataric M (2013) A socially assistive robot exercise coach for the elderly. J Hum Robot Interact 2(2):3–32

    Article  Google Scholar 

  97. Scassellati B, Admoni H, Matarić M (2012) Robots for use in autism research. Annu Rev Biomed Eng 14:275–294

    Article  Google Scholar 

  98. National Autistic Society (2014) What is autism?

  99. Hughes JR (2008) A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav 13(3):425–437

    Article  Google Scholar 

  100. Meltzoff AN, Moore MK (1983) Newborn infants imitate adult facial gestures. Child Dev 54:702–709

    Article  Google Scholar 

  101. Dawson G, Hill D, Spencer A, Galpert L, Watson L (1990) Affective exchanges between young autistic children and their mothers. J Abnorm Child Psychol 18(3):335–345

    Article  Google Scholar 

  102. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7(12):942–951

    Article  Google Scholar 

  103. Williams JHG, Whiten A, Suddendorf T, Perrett DI (2001) Imitation, mirror neurons and autism

  104. Kim S (2013) Neuro-cognition and social-cognition: application to exercise rehabilitation. J Exerc Rehabil 9(6):496–499

    Article  Google Scholar 

  105. Field T, Nadel J, Ezell S (2006) Imitation therapy for young children with autism. In: Williams T (ed) Autism spectrum disorders: from genes to environment. InTech, New York, pp 287–298

    Google Scholar 

  106. Behrends A, Müller S, Dziobek I (2012) Moving in and out of synchrony: a concept for a new intervention fostering empathy through interactional movement and dance. Arts Psychother 39(2):107–116

    Article  Google Scholar 

  107. Pierno AC, Mari M, Lusher D, Castiello U (2008) Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia 46(2):448–454

    Article  Google Scholar 

  108. Dautenhahn K, Werry I (2004) Towards interactive robots in autism therapy: background, motivation and challenges. Pragmat Cognit 12(1):1–35

    Article  Google Scholar 

  109. Ravindra S, De Silva S, Tadano K, Higashi M, Saito A, Lambacher SG (2009) Therapeutic-assisted robot for children with autism. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. pp 3561–3567

  110. Cabibihan J-J, Javed H, Ang M, Aljunied SM (2013) Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. Int J Soc Robot 5(4):593–618

    Article  Google Scholar 

  111. Billard A, Robins B, Nadel J, Dautenhahn K (2007) Building robota, a mini-humanoid robot for the rehabilitation of children with autism. Assist Technol 19(1):37–49

    Article  Google Scholar 

  112. Michaud F, Caron S (2002) Roball, the rolling robot. Auton Robots 12(2):211–222

    Article  MATH  Google Scholar 

  113. Dautenhahn K, Nehaniv CL, Walters ML, Robins B, Kose-Bagci Hatice, Mirza Assif N, Blow Mike (2009) Kaspar-a minimally expressive humanoid robot for human–robot interaction research. Appl Bionics Biomech 6(3–4):369–397

    Article  Google Scholar 

  114. Kozima H, Michalowski MP, Nakagawa C (2009) Keepon. Int J Soc Robot 1(1):3–18

    Article  Google Scholar 

  115. Vanderborght B, Simut R, Saldien J, Pop C, Rusu AS, Pintea S, Lefeber D, David DO (2012) Using the social robot probo as a social story telling agent for children with asd. Interact Stud 13(3):348–372

    Article  Google Scholar 

  116. Boucenna S, Narzisi A, Tilmont E, Muratori F, Pioggia G, Cohen D, Chetouani M (2014) Interactive technologies for autistic children: a review. Cognit Comput, pp 1–16

  117. Thill S, Pop CA, Belpaeme T, Ziemke T, Vanderborght B (2013) Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: challenges and outlook. Paladyn 3(4):209–217

    Google Scholar 

  118. Diehl JJ, Schmitt LM, Villano M, Crowell CR (2012) The clinical use of robots for individuals with autism spectrum disorders: a critical review. Res Autism Spectr Disord 6(1):249–262

    Article  Google Scholar 

  119. Grossberg S, Vladusich T (2010) How do children learn to follow gaze, share joint attention, imitate their teachers, and use tools during social interactions? Neural Netw 23(8–9):940–965

    Article  Google Scholar 

  120. Greczek J, Kaszubski E, Atrash A, Mataric M (2014) Graded cueing feedback in robot-mediated imitation practice for children with autism spectrum disorders. In: The 23rd IEEE international symposium on robot and human interactive communication, IEEE, pp 561–566

  121. Klin A, Jones W, Schultz R, Volkmar F (2003) The enactive mind, or from actions to cognition: lessons from autism. Philos Trans R Soci Lond Ser B 358(1430):345–360

    Article  Google Scholar 

  122. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009) Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 459(7244):257–261

    Article  Google Scholar 

  123. Cook J, Swapp D, Pan X, Bianchi-Berthouze N, Blakemore S-J (2014) Atypical interference effect of action observation in autism spectrum conditions. Psychol Med 44(4):731–740

    Article  Google Scholar 

  124. Duquette A, Michaud F, Mercier H (2007) Exploring the use of a mobile robot as an imitation agent withchildren with low-functioning autism. Auton Robots 24(2):147–157

    Article  Google Scholar 

  125. Alzheimer S (2014) Disease facts and figures. Technical report, Alzheimer’s Association

  126. Filan SL, Llewellyn-Jones RH (2006) Animal-assisted therapy for dementia: a review of the literature. International psychogeriatrics/IPA 18(4):597–611

    Article  Google Scholar 

  127. Shibata T (2012) Therapeutic seal robot as biofeedback medical device: qualitative and quantitative evaluations of robot therapy in dementia care. Proc IEEE 100(8):2527–2538

    Article  Google Scholar 

  128. Heerink M, Albo-Canals J (2013) Exploring requirements and alternative pet robots for robot assisted therapy with older adults with dementia. In: 5th international conference on social robotics, ICSR 2013, Bristol, pp 104–115

  129. Pfadenhauer M (2013) On the sociality of social robots. A sociology-of-knowledge perspective. Sci Technol Innov Stud 10(1):135–153

    Google Scholar 

  130. Mordoch E, Osterreicher A, Guse L, Roger K, Thompson G (2013) Use of social commitment robots in the care of elderly people with dementia: a literature review. Maturitas 74(1):14–20

    Article  Google Scholar 

  131. Marti P, Giusti L, Lund HH (2009) The role of modular robotics in mediating nonverbal social exchanges. IEEE Trans Robot 25(3):602–613

    Article  Google Scholar 

  132. Martín F, Agüero CE, Cañas JM, Valenti M, Martínez-Martín P (2013) Robotherapy with dementia patients. Int J Adv Robot Syst 10:1

    Article  Google Scholar 

  133. Mead R, Matarić MJ (2009) The power of suggestion: teaching sequences though assistive robot motions. In: Proceedings of the 4th ACM/IEEE international conference on human robot interaction—HRI ’09, ACM Press, New York, p 317

  134. Nyström K, Lauritzen SOl (2005) Expressive bodies: demented persons’ communication in a dance therapy context. Health (London, England : 1997), vol 9(3), pp 297–317

  135. Krebs HI, Hogan N (2012) Robotic therapy: the tipping point. Am J Phys Med Rehabil 91(11 Suppl 3):S290–S297

    Article  Google Scholar 

  136. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11(1):3

    Article  Google Scholar 

  137. Eriksson J, Mataric MJ, Winstein C (2005) Hands-off assistive robotics for post-stroke arm rehabilitation. In: Proceedings of IEEE international conference on rehabilitation robotics (ICORR05), pp 21–24

  138. Kang KIl, Freedman S, Mataric MJ, Cunningham MJ, Lopez B (2005) A hands-off physical therapy assistance robot for cardiac patients. In: Rehabilitation robotics, 2005. ICORR 2005. 9th international conference on, IEEE, pp 337–340

  139. Ganesh G, Takagi A, Osu R, Yoshioka T, Kawato M, Burdet E (2014) Two is better than one: physical interactions improve motor performance in humans. Sci Rep 4:3824

    Article  Google Scholar 

  140. Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional? Neuroscientist 20(1):56–70

    Article  Google Scholar 

  141. Elbert T, Rockstroh B, Bulach D, Meinzer M, Taub E (2003) New developments in stroke rehabilitation based on behavioral and neuroscientific principles: constraint-induced therapy. Der Nervenarzt 74(4):334–342

    Article  Google Scholar 

  142. Kwakkel G, Kollen BJ, Krebs HI (2009) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121

    Article  Google Scholar 

  143. Howard AM (2013) Robots learn to play: robots emerging role in pediatric therapy. In: FLAIRS conference. St. Pete Beach, Florida, USA. AAAI, pp 3–8

  144. Tapus A, Tapus C, Mataric MJ (2007) Hands-off therapist robot behavior adaptation to user personality for post-stroke rehabilitation therapy. In: Proceedings 2007 IEEE international conference on robotics and automation. IEEE, pp 1547–1553

  145. Mead R, Wade E, Johnson P, Clair AS, Chen S, Mataric MJ (2010) An architecture for rehabilitation task practice in socially assistive human-robot interaction. In: 19th international symposium in robot and human interactive communication. IEEE, pp 404–409

  146. Wade E, Parnandi AR, Mataric MJ (2011) Using socially assistive robotics to augment motor task performance in individuals post-stroke. In: 2011 IEEE/RSJ international conference on intelligent robots and systems. pp 2403–2408

  147. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, Buccino G (2007) Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage 36(Suppl 2):T164–T173

    Article  Google Scholar 

  148. Celnik P, Webster B, Glasser DM, Cohen LG (2008) Effects of action observation on physical training after stroke. Stroke 39(6):1814–1820

    Article  Google Scholar 

  149. Morris C (2007) Definition and classification of cerebral palsy: a historical perspective. Developmental medicine and child neurology 109(1964):3–7

    Article  Google Scholar 

  150. Fasoli SE, Ladenheim B, Mast J, Krebs HI (2012) New horizons for robot-assisted therapy in pediatrics. Am J Phys Med Rehabil 91(11 Suppl 3):S280–S289

    Article  Google Scholar 

  151. Brütsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lünenburger L, Riener R, Jäncke L, Meyer-Heim A (2010) Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil 7:15

    Article  Google Scholar 

  152. Kozyavkin V, Kachmar O, Ablikova I (2014) Humanoid social robots in the rehabilitation of children with cerebral palsy. In: 2nd patient rehabilitation research techniques workshop. Oldenburg, pp 1–2

  153. Hausdorff JM (2009) Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19(2):026113

    Article  MathSciNet  Google Scholar 

  154. Uchitomi H, Miyake Y, Orimo S, Wada Y, Suzuki K, Hove MJ, Nishi T (2011) Interpersonal synchrony-based dynamic stabilization in walking rhythm of Parkinson’s disease. In: The 2011 IEEE/ICME international conference on complex medical engineering. IEEE, pp 614–620

  155. Miyake Y (2009) Interpersonal synchronization of body motion and the walk-mate walking support robot. IEEE Trans Robot 25(3):638–644

    Article  MathSciNet  Google Scholar 

  156. Uchitomi H, Ota L, Ogawa K-I, Orimo S, Miyake Y (2013) Interactive rhythmic cue facilitates gait relearning in patients with Parkinson’s disease. PLoS One 8(9):e72176

    Article  Google Scholar 

  157. Baram Y, Miller A (2007) Auditory feedback control for improvement of gait in patients with Multiple Sclerosis. J Neurol Sci 254(1–2):90–94

    Article  Google Scholar 

  158. Muto T, Herzberger B, Hermsdoerfer J, Miyake Y, Poeppel E (2012) Interactive cueing with walk-mate for hemiparetic stroke rehabilitation. J Neuroeng Rehabil 9(1):58

    Article  Google Scholar 

  159. Peveler R (2002) ABC of psychological medicine: depression in medical patients. BMJ 325(7356):149–152

    Article  Google Scholar 

  160. Steffens DC, Skoog I, Norton MC, Hart AD, Tschanz JT, Plassman BL, Wyse BW, Welsh-Bohmer KA, Breitner JCS (2000) Prevalence of depression and Its treatment in an elderly population. Arch Gen Psychiatry 57(6):601–607

    Article  Google Scholar 

  161. Gallego-Perez J, Lohse M, Evers V (2013) Robots to motivate elderly people: present and future challenges. In: Proceedings of the IEEE international workshop on robot and human interactive communication. IEEE, pp 685–690

  162. David D, Matu S-A, David OA (2014) Robot-based psychotherapy: concepts development, state of the art, and new directions. Int J Cognit Ther 7(2):192–210

    Article  Google Scholar 

  163. Wada K, Shibata T, Saito T, Sakamoto K, Tanie K (2005) Psychological and social effects of one year robot assisted activity on elderly people at a health service facility for the aged. In: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, pp 2785–2790

  164. Neil AL, Batterham P, Christensen H, Bennett K, Griffiths KM (2009) Predictors of adherence by adolescents to a cognitive behavior therapy website in school and community-based settings. J Med Internet Res 11(1):e6

    Article  Google Scholar 

  165. Bresó A, Martínez-Miranda J, García-Gómez JM (2014) Leveraging adaptive sessions based on therapeutic empathy through a virtual agent. In: 6th international conference on agents and artificial intelligence (ICAART 2014). Angers, pp 46–55

  166. Thwaites R, Bennett-Levy J (2007) Conceptualizing empathy in cognitive behaviour therapy: making the implicit explicit. Behav Cognit Psychother 35(05):591–612

    Article  Google Scholar 

  167. Tapus A, Tapus C, Mataric M (2009) The role of physical embodiment of a therapist robot for individuals with cognitive impairments. In: RO-MAN 2009: the 18th IEEE international symposium on robot and human interactive communication. IEEE, pp 103–107

  168. Gratch J, Morency L-P, Scherer S, Stratou G, Boberg J, Koenig S, Adamson T, Rizzo A (2013) User-state sensing for virtual health agents and telehealth applications. In Studies in health technology and informatics, vol 184: medicine meets virtual reality 20. IOS Press Ebooks, pp 151–157

  169. Plaisant C, Druin A, Lathan C, Dakhane K, Edwards K, Vice JM, Montemayor J (2000) A storytelling robot for pediatric rehabilitation. In: Proceedings of the fourth international ACM conference on assistive technologies: assets ’00. USA. ACM Press, New York, pp 50–55

  170. Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C (2012) The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc Cognit Affect Neurosci 7(4):413–422

    Article  Google Scholar 

  171. Sparrow R (2002) The march of the robot dogs. Ethics Inf Technol 4(4):305–318

    Article  MathSciNet  Google Scholar 

  172. Sharkey A, Sharkey N (2012) Granny and the robots: ethical issues in robot care for the elderly. Ethics Inf Technol 14(1):27–40

    Article  Google Scholar 

  173. Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Scott Kelso JA (2008) Social coordination dynamics: measuring human bonding. Soc Neurosci 3(2):178–192

    Article  Google Scholar 

  174. Sciutti A, Bisio A, Nori F, Metta G, Fadiga L, Pozzo T, Sandini G (2012) Measuring human–robot interaction through motor resonance. Int J Soc Robot 4(3):223–234

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in parts by the European Union Seventh Framework Programme (FP7/ 2007-2013) through the ERC Starting Grant “Con-Humo” under Grant agreement No. 337654 and “Hobbit” under Grant agreement No. 288146, from the EU Framework Programme Horizon 2020 through “RAMCIP” under Grant agreement No.643433, and from the Austrian Science Foundation (FWF) under Grant agreement T623-N23, V4HRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Lorenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenz, T., Weiss, A. & Hirche, S. Synchrony and Reciprocity: Key Mechanisms for Social Companion Robots in Therapy and Care. Int J of Soc Robotics 8, 125–143 (2016). https://doi.org/10.1007/s12369-015-0325-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-015-0325-8

Keywords

Navigation