Abstract
Short life-cycle products which are characterized by uncertain demand, short selling season and long lead times have been posing many challenges to supply chain members. Demand of these products depends on several factors such as price, quality, service etc. Apart from these, many business practices have revealed that presence of a larger quantity of goods displayed at retail level also attract customers considerably. This paper captures the stock dependency phenomenon and investigates the role of quantity discounts and returns policies in the coordination of a supply chain. Here, the manufacturer in addition to returns policy provides quantity discounts to two competing retailers who face price-sensitive, stock dependent and uncertain demand. Using the newsvendor framework, a combined contract model is developed and sensitivity analysis is performed to analyze the impact of various parameters on supply chain coordination. The result shows that proposed contract mechanism fails to coordinate when the value of price sensitivity factor approaches the value of cross price sensitivity factor. Further, price-sensitivity and cross-price sensitivity have little effect on coordination benefit at lower values of stock dependency whereas there is a significant impact at higher values of stock dependency.
Similar content being viewed by others
References
Choi SC (1996) Price competition in a duopoly common retailer channel. J Retailing 72(2):117–134
Emmons H, Gilbert SM (1998) Note. The role of returns policies in pricing and inventory decisions for catalogue goods. Manag Sci 44(2):276–283
Ingene CA, Parry ME (1995) Channel coordination when retailers compete. Mark Sci 14(4):360–377
Kandel E (1996) The right to return. J Law Econ 39:329–356
Lau AHL, Lau H-S (2003) Effects of a demand-curve’s shape on the optimal solutions of a multi-echelon inventory/pricing model. Eur J Oper Res 147:530–548
McGuire TW, Staelin R (1983) An industry equilibrium analysis of downstream vertical integration. Mark Sci 2:161–191
Padmanabhan V, Png IPL (1997) Manufacturer’s return policies and retail competition. Mark Sci 16(1):81–94
Parlar M, Weng ZK (2006) Coordinating pricing and production decisions in the presence of price competition. Eur J Oper Res 170:211–227
Pasternack BA (1985) Optimal pricing and return policies for perishable commodities. Mark Sci 4(2):166–176
Petruzzi NC, Dada M (1999) Pricing and newsvendor problem: a review with extensions. Oper Res 47(2):183–194
Shi C-S, Su C-T (2004) Integrated inventory model of returns-quantity discounts contract. J Oper Res Soc 55:240–246
Tsay AA, Agrawal N (2000) Channel dynamics under price and service competition. Manuf Serv Oper Manag 2(4):372–391
Tsay AA, Nahmias S, Agrawal N (1999) Modeling supply chain contracts: a review. In: Tayur S, Ganeshan R, Magazine M (eds) Quantitative models in supply chain management. Kluwer, Dordrecht, pp 299–336
Urban TL (2005) Inventory models with inventory level-dependent demand: a comprehensive review and unifying theory. Eur J Oper Res 162:792–804
Wang Y, Gerchak Y (2001) Supply chain coordination when demand is shelf-space-dependent. Manuf Serv Operations Manag 3(1):82–87
Wu O, Chen H (2003) Chain-to chain competition under demand uncertainty. In: Working paper, University of Michigan. http://webuser.bus.umich.edu/owenwu/academic/Chain-to-Chain_2.pdf
Yao Z, Wu Y, Lai KK (2005) Demand uncertainty and manufacturer returns policies for style-good retailing competition. Prod Plan Control 16(7):691–700
Yao Z, Leung SCH, Lai KK (2008) Analysis of the impact of price-sensitivity factors on return policy in coordinating supply chain. Eur J Oper Res 187:275–282
You P-S, Hsieh Y-C (2007) An EOQ model with stock and price sensitive demand. Math Comput Model 45:933–942
Zhou Y-W, Min J, Goyal SK (2008) Supply chain coordination under inventory-level-dependent demand rate. Int J Prod Econ 113:518–527
Acknowledgments
Authors would like to thank the editor-in-chief and the two anonymous referees for their valuable suggestions and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
We know that \( F\left( z \right) = {\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}} \). Let \( {\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}} = \rho \) so that \( z = F^{ - 1} \left( \rho \right) \)
Appendix 2
For uniform distribution, \( E\left[ {\left( {z - \varepsilon } \right)^{ + } } \right] = \int_{A}^{z} {\left( {{\frac{x - A}{B - A}}} \right)dx} = \left[ {{\frac{{\left( {x - A} \right)^{2} }}{{2\left( {B - A} \right)}}}} \right]_{A}^{z} = {\frac{{\left( {z - A} \right)^{2} }}{{2\left( {B - A} \right)}}} \)
Rights and permissions
About this article
Cite this article
Parthasarathi, G., Sarmah, S.P. & Jenamani, M. Supply chain coordination under retail competition using stock dependent price-setting newsvendor framework. Oper Res Int J 11, 259–279 (2011). https://doi.org/10.1007/s12351-010-0077-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12351-010-0077-z