Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Supply chain coordination under retail competition using stock dependent price-setting newsvendor framework

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Short life-cycle products which are characterized by uncertain demand, short selling season and long lead times have been posing many challenges to supply chain members. Demand of these products depends on several factors such as price, quality, service etc. Apart from these, many business practices have revealed that presence of a larger quantity of goods displayed at retail level also attract customers considerably. This paper captures the stock dependency phenomenon and investigates the role of quantity discounts and returns policies in the coordination of a supply chain. Here, the manufacturer in addition to returns policy provides quantity discounts to two competing retailers who face price-sensitive, stock dependent and uncertain demand. Using the newsvendor framework, a combined contract model is developed and sensitivity analysis is performed to analyze the impact of various parameters on supply chain coordination. The result shows that proposed contract mechanism fails to coordinate when the value of price sensitivity factor approaches the value of cross price sensitivity factor. Further, price-sensitivity and cross-price sensitivity have little effect on coordination benefit at lower values of stock dependency whereas there is a significant impact at higher values of stock dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Choi SC (1996) Price competition in a duopoly common retailer channel. J Retailing 72(2):117–134

    Article  Google Scholar 

  • Emmons H, Gilbert SM (1998) Note. The role of returns policies in pricing and inventory decisions for catalogue goods. Manag Sci 44(2):276–283

    Article  Google Scholar 

  • Ingene CA, Parry ME (1995) Channel coordination when retailers compete. Mark Sci 14(4):360–377

    Article  Google Scholar 

  • Kandel E (1996) The right to return. J Law Econ 39:329–356

    Article  Google Scholar 

  • Lau AHL, Lau H-S (2003) Effects of a demand-curve’s shape on the optimal solutions of a multi-echelon inventory/pricing model. Eur J Oper Res 147:530–548

    Article  Google Scholar 

  • McGuire TW, Staelin R (1983) An industry equilibrium analysis of downstream vertical integration. Mark Sci 2:161–191

    Article  Google Scholar 

  • Padmanabhan V, Png IPL (1997) Manufacturer’s return policies and retail competition. Mark Sci 16(1):81–94

    Article  Google Scholar 

  • Parlar M, Weng ZK (2006) Coordinating pricing and production decisions in the presence of price competition. Eur J Oper Res 170:211–227

    Article  Google Scholar 

  • Pasternack BA (1985) Optimal pricing and return policies for perishable commodities. Mark Sci 4(2):166–176

    Article  Google Scholar 

  • Petruzzi NC, Dada M (1999) Pricing and newsvendor problem: a review with extensions. Oper Res 47(2):183–194

    Article  Google Scholar 

  • Shi C-S, Su C-T (2004) Integrated inventory model of returns-quantity discounts contract. J Oper Res Soc 55:240–246

    Article  Google Scholar 

  • Tsay AA, Agrawal N (2000) Channel dynamics under price and service competition. Manuf Serv Oper Manag 2(4):372–391

    Article  Google Scholar 

  • Tsay AA, Nahmias S, Agrawal N (1999) Modeling supply chain contracts: a review. In: Tayur S, Ganeshan R, Magazine M (eds) Quantitative models in supply chain management. Kluwer, Dordrecht, pp 299–336

    Chapter  Google Scholar 

  • Urban TL (2005) Inventory models with inventory level-dependent demand: a comprehensive review and unifying theory. Eur J Oper Res 162:792–804

    Article  Google Scholar 

  • Wang Y, Gerchak Y (2001) Supply chain coordination when demand is shelf-space-dependent. Manuf Serv Operations Manag 3(1):82–87

    Article  Google Scholar 

  • Wu O, Chen H (2003) Chain-to chain competition under demand uncertainty. In: Working paper, University of Michigan. http://webuser.bus.umich.edu/owenwu/academic/Chain-to-Chain_2.pdf

  • Yao Z, Wu Y, Lai KK (2005) Demand uncertainty and manufacturer returns policies for style-good retailing competition. Prod Plan Control 16(7):691–700

    Article  Google Scholar 

  • Yao Z, Leung SCH, Lai KK (2008) Analysis of the impact of price-sensitivity factors on return policy in coordinating supply chain. Eur J Oper Res 187:275–282

    Article  Google Scholar 

  • You P-S, Hsieh Y-C (2007) An EOQ model with stock and price sensitive demand. Math Comput Model 45:933–942

    Article  Google Scholar 

  • Zhou Y-W, Min J, Goyal SK (2008) Supply chain coordination under inventory-level-dependent demand rate. Int J Prod Econ 113:518–527

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the editor-in-chief and the two anonymous referees for their valuable suggestions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Parthasarathi.

Appendices

Appendix 1

We know that \( F\left( z \right) = {\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}} \). Let \( {\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}} = \rho \) so that \( z = F^{ - 1} \left( \rho \right) \)

$$ \begin{aligned} {\frac{\partial z}{\partial p}} = & {\frac{\partial z}{\partial \rho }}{\frac{\partial \rho }{\partial p}} = {\frac{{\partial F^{ - 1} \left( \rho \right)}}{\partial \rho }}{\frac{\partial \rho }{\partial p}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial \rho }{\partial p}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial }{\partial p}}\left( {{\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}}} \right) \\ = & {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{{\left( {m + sc} \right)}}{{\left( {1 - c} \right)\left( {p + s} \right)^{2} }}} > 0 \\ \end{aligned} $$
$$ \begin{aligned} {\frac{\partial z}{\partial m}} = & {\frac{\partial z}{\partial \rho }}{\frac{\partial \rho }{\partial m}} = {\frac{{\partial F^{ - 1} \left( \rho \right)}}{\partial \rho }}{\frac{\partial \rho }{\partial m}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial \rho }{\partial m}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial }{\partial m}}\left( {{\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}}} \right) \\ = & {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{ - 1}{{\left( {1 - c} \right)\left( {p + s} \right)}}} < 0 \\ \end{aligned} $$
$$ \begin{aligned} {\frac{\partial z}{\partial a}} = & {\frac{\partial z}{\partial \rho }}{\frac{\partial \rho }{\partial a}} = {\frac{{\partial F^{ - 1} \left( \rho \right)}}{\partial \rho }}{\frac{\partial \rho }{\partial a}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial \rho }{\partial a}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial }{\partial a}}\left( {{\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}}} \right) \\ = & {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}\left( 0 \right) = 0 \\ \end{aligned} $$
$$ \begin{aligned} {\frac{\partial z}{\partial b}} = & {\frac{\partial z}{\partial \rho }}{\frac{\partial \rho }{\partial b}} = {\frac{{\partial F^{ - 1} \left( \rho \right)}}{\partial \rho }}{\frac{\partial \rho }{\partial b}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial \rho }{\partial b}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial }{\partial b}}\left( {{\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}}} \right) \\ = & {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}\left( 0 \right) = 0 \\ \end{aligned} $$
$$ \begin{aligned} {\frac{\partial z}{\partial c}} = & {\frac{\partial z}{\partial \rho }}{\frac{\partial \rho }{\partial c}} = {\frac{{\partial F^{ - 1} \left( \rho \right)}}{\partial \rho }}{\frac{\partial \rho }{\partial c}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial \rho }{\partial c}} = {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{\partial }{\partial c}}\left( {{\frac{p + s - m - sc}{{\left( {1 - c} \right)\left( {p + s} \right)}}}} \right) \\ = & {\frac{1}{{f\left( {F^{ - 1} \left( \rho \right)} \right)}}}{\frac{{\left( {p - m} \right)}}{{\left( {1 - c} \right)\left( {p + s} \right)^{2} }}} > 0 \\ \end{aligned} $$

Appendix 2

$$ \begin{aligned} E\left[ {\left( {z - \varepsilon } \right)^{ + } } \right] = & \int\limits_{A}^{z} {\left( {z - x} \right)} f\left( x \right)dx \\ = & \left[ {\left( {z - x} \right)F\left( x \right) + \int\limits {F\left( x \right)dx} } \right]_{A}^{z} \\ = & \left[ {\left( {z - x} \right)F\left( x \right)} \right]_{A}^{z} + \left[ {\int\limits {F\left( x \right)dx} } \right]_{A}^{z} \\ = & \int\limits_{A}^{z} {F\left( x \right)dx} \\ \end{aligned} $$

For uniform distribution, \( E\left[ {\left( {z - \varepsilon } \right)^{ + } } \right] = \int_{A}^{z} {\left( {{\frac{x - A}{B - A}}} \right)dx} = \left[ {{\frac{{\left( {x - A} \right)^{2} }}{{2\left( {B - A} \right)}}}} \right]_{A}^{z} = {\frac{{\left( {z - A} \right)^{2} }}{{2\left( {B - A} \right)}}} \)

$$ {\frac{\partial }{\partial z}}E\left[ {\left( {z - \varepsilon } \right)^{ + } } \right] = {\frac{\partial }{\partial z}}\left[ {{\frac{{\left( {z - A} \right)^{2} }}{{2\left( {B - A} \right)}}}} \right] = {\frac{z - A}{B - A}} < 1 $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathi, G., Sarmah, S.P. & Jenamani, M. Supply chain coordination under retail competition using stock dependent price-setting newsvendor framework. Oper Res Int J 11, 259–279 (2011). https://doi.org/10.1007/s12351-010-0077-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-010-0077-z

Keywords

Navigation