Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Periodic Solution and Ergodic Stationary Distribution of SEIS Dynamical Systems with Active and Latent Patients

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper proposes two new stochastic non-autonomous SEIS epidemic dynamical models with latent and active patients. For the non-autonomous periodic system, we first obtain the sufficient conditions for the existence of nontrivial positive periodic solution by constructing some suitable stochastic Lyapunov functions with regime switching. Then we prove the existence of ergodic stationary distribution of the stochastic SEIS epidemic model with Markov conversion by using the stochastic qualitative theory. At last, some rigorous computer numerical simulations illustrate our theoretical results. The results show that the large random disturbance can destroy the periodic solution and the ergodic stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kermack, W.O., McKendrick, A.G.: A contributions to the mathematical theory of epidemics (part I). Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  2. Zhao, Y.N., Jiang, D.Q.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243, 718–727 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433, 227–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Miao, A.Q., Wang, X.Y., Zhang, T.Q., Wang, W., Sampath Aruna Pradeep, B.G.: Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis. Adv. Differ. Equ. 2017(1), 226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qi, H.K., Liu, L.D., Meng, X.Z.: Dynamics of a non-autonomous stochastic SIS epidemic model with double epidemic hypothesis. Complexity 2017, 14 (2017)

    Article  MATH  Google Scholar 

  6. Gray, A., Greenhalgh, D., Hu, L., Mao, X.R., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. McCluskey, C.C.: Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal. Real World Appl. 11(1), 55–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. d’Onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18(7), 729–732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Miao, A.Q., Zhang, J., Zhang, T.Q., Sampath Aruna Pradeep, B.G.: Threshold dynamics of a stochastic SIR model with vertical transmission and vaccination. Comput. Math. Methods Med. 2017, 10 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Q.S., Jiang, D.Q., Shi, N.Z., Ji, C.Y.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lahrouza, A., Omaria, L., Kiouachb, D., Belmaatic, A.: Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination. Appl. Math. Comput. 218(11), 6519–6525 (2012)

    MathSciNet  Google Scholar 

  12. Zhao, J.D., Wang, L.S., Han, Z.X.: Stability analysis of two new SIRS models with two viruses. Int. J. Comput. Math. 2017, 1–10 (2017)

    Google Scholar 

  13. Li, C.H., Tsai, C.C., Yang, S.Y.: Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun. Nonlinear Sci. 19(4), 1042–1054 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gao, S.J., Chen, L.S., Nieto, J.J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24, 6037–6045 (2006)

    Article  Google Scholar 

  15. Meng, X.Z., Wu, Z.T., Zhang, T.Q.: The dynamics and therapeutic strategies of a SEIS epidemic model. Int. J. Biomath. 6(5), 1350029 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, F., Meng, X.Z., Wang, X.Z.: Analysis and numerical simulations of a stochastic SEIQR epidemic system with quarantine-adjusted incidence and imperfect vaccination. Comput. Math. Methods Med. 2018, 7873902 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, Y., Chen, S.H., Gao, S.J., Wei, X.: Stochastic periodic solution for a perturbed non-autonomous predator–prey model with generalized nonlinear harvesting and impulses. Physica A 486, 347–366 (2017)

    Article  MathSciNet  Google Scholar 

  18. Leng, X.N., Feng, T., Meng, X.Z.: Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps. J. Inequal. Appl. 2017(1), 138 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Y.L., Yuan, S.L., Zhao, D.L.: Threshold behavior of a stochastic SIS model with Levy jumps. Appl. Math. Comput. 275, 255–267 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Liu, L.D., Meng, X.Z.: Optimal harvesting control and dynamics of two-species stochastic model with delays. Adv. Differ. Equ. 2017(1), 18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, M., Fan, M.: Permanence of stochastic Lotka–Volterra systems. J. Nonlinear Sci. 27, 425–452 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lv, X.J., Wang, L., Meng, X.Z.: Global analysis of a new nonlinear stochastic differential competition system with impulsive effect. Adv. Differ. Equ. 2017, 296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, M.: Optimal harvesting policy of a stochastic predator-prey model with time delay. Appl. Math. Lett. 48, 102–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435, 593–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y.H., Pan, Z.T., Li, Y., Zhang, W.H.: H\(_{\infty }\) control for nonlinear stochastic Markov systems with time-delay and multiplicative noise. J. Syst. Sci. Complex. 30, 1–23 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y., Fan, K.G., Gao, S.J., Chen, S.H.: A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates. Appl. Math. Lett. 76, 46–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, X.K., Li, Y., Zhang, W.H.: Stochastic linear quadratic optimal control with constraint for discrete-time systems. Appl. Math. Comput. 228, 264–270 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, Y., Yuan, S., Zhang, T.: The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Commun. Nonlinear Sci. 37, 131–142 (2016)

    Article  MathSciNet  Google Scholar 

  29. Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)

    MathSciNet  Google Scholar 

  30. Wang, Y., Jiang, D.Q., Hayat, T., Ahmad, B.: A stochastic HIV infection model with T-cell proliferation and CTL immune response. Appl. Math. Comput. 315, 477–493 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan, C., Zhang, W.H.: On observability and detectability of continuous-time stochastic Markov jump systems. J. Syst. Sci. Complex. 28(4), 830–847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bai, Z., Zhou, Y.: Existence of two periodic solutions for a non-autonomous SIR epidemic model. Appl. Math. Model. 35(1), 382–391 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuniya, T.: Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients. Appl. Math. Lett. 27, 15–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, S.Q., Meng, X.Z., Feng, T., Zhang, T.H.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator–prey system with impulsive effects. Nonlinear Anal. Hybrid Syst. 26, 19–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, Q., Jiang, D.Q., Hayat, T., Ahmad, B.: Periodic solution and stationary distribution of stochastic SIR epidemic models with higher order perturbation. Physica A 482, 209–217 (2017)

    Article  MathSciNet  Google Scholar 

  36. Liu, Q., Jiang, D.Q.: Periodic solution and stationary distribution of stochastic predator–prey models with higher-order perturbation. J. Nonlinear Sci. 2017, 1–20 (2017)

    Google Scholar 

  37. Li, Z.X., Chen, L.S., Liu, Z.J.: Periodic solution of a chemostat model with variable yield and impulsive state feedback control. Appl. Math. Model. 36(3), 1255–1266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, Q., Mao, X.R.: Stochastic population dynamics under regime switching. J. Math. Anal. Appl. 334(1), 69–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Mao, X.R.: Stochastic Differential Equations and Their Applications. Horwood, Chichester (1997)

    MATH  Google Scholar 

  41. Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

    Google Scholar 

  42. Mao, X.R., Marion, G., Renshaw, E.: Environmental brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the SDUST Research Fund (2014TDJH102), and the Research Fund for the Taishan Scholar Project of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhu Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Leng, X., Meng, X. et al. Periodic Solution and Ergodic Stationary Distribution of SEIS Dynamical Systems with Active and Latent Patients. Qual. Theory Dyn. Syst. 18, 347–369 (2019). https://doi.org/10.1007/s12346-018-0289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0289-9

Keywords

Mathematics Subject Classification

Navigation