Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Kriging surrogates for evolutionary multi-objective optimization of CPU intensive sheet metal forming applications

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a method to perform evolutionary multi-objective optimization of CPU intensive sheet metal forming applications using kriging surrogates. Two main ingredients are employed to achieve this goal. First of all, given a learning dataset, the kriging surrogate is designed to minimize the leave-one-out error. Secondly, during the optimization, new data points are added to the learning set to update the surrogate locally (by well chosen points on the current Pareto front) and globally (by maximum kriging variance points over the entire design landscape). The ability of the method to capture Pareto fronts with accuracy is demonstrated on the well-known ZDT test functions. The method is then tested on a real-life problem, the simultaneous minimization of springback and failure for a three-dimensional CPU intensive high strength steel stamping industrial use case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. An attempt to use a parallel version of LS-DYNA was made on the INRIA cluster but it was too complicated to manage that is why a serial version was used

References

  1. AIJ Forrester A, Sóbester AJK (2008) Engineering Design via Surrogate Modelling: A Practical Guide, vol 1. J. Wiley, Hoboken

    Book  Google Scholar 

  2. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: A step towards efficient shape optimization. Comput Methods Appl Mech Eng 268(0):178–193. doi:10.1016/j.cma.2013.09.003. http://www.sciencedirect.com/science/article/pii/S0045782513002284

  3. An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manufac Technol 60(9-12):1017–1030. doi:10.1007/s00170-011-3648-0

    Article  Google Scholar 

  4. Chinesta Francisco AA, Elias C (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  5. Coello C, Lamont G, Van Veldhuisen D (2007) Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and evolutionary computation series. Springer Science+Business Media, LLC. http://books.google.fr/books?id=rXIuAMw3lGAC

  6. Corporation L.S.T. (2011) Ls-dyna. http://www.lstc.com/products/ls-dyna

  7. Couckuyt I, Forrester A, Gorissen D, Turck FD, Dhaene T (2012) Blind kriging: Implementation and performance analysis. Adv Eng Soft 49(0):1–13. doi:10.1016/j.advengsoft.2012.03.002 10.1016/j.advengsoft.2012.03.002. http://www.sciencedirect.com/science/article/pii/S0965997812000476

  8. Deb K (2008) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback series. Wiley. http://books.google.fr/books?id=U0dnPwAACAAJ

  9. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel Problem Solving from Nature PPSN VI. Springer, Berlin, pp 849–858

    Chapter  Google Scholar 

  10. Ehrgott M (2005) Multicriteria Optimization. Lectures notes in economics and mathematical systems. Springer. http://books.google.fr/books?id=yrZw9srrHroC

  11. Dune F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press Inc, New York

    Google Scholar 

  12. Fourment L, Ducloux R, Marie S, Ejday M, Monnereau D, Masse T, Montmitonnet P Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms. In: Barlat F, Moon YH, Lee MG (Eds) Numiform 2010, VOLS 1 AND 2: Dedicated to Professor O. C. Zienkiewicz (1921-2009), AIP Conference Proceedings vol. 1252,pp. 833–840.Korean Soc Technol Plastic; Postech, Grad Inst ferrous Technol; Pusan Natl Univ, ERC Net Shape & Die Mfg; Korea Inst Ind Technol; Korea Inst Mat Sci; POSCO; POSTECH, World Class Univ Progrem, GIFT, Amer Inst Physics, 2 Huntington Quadrangle, STE 1NO1, Melville, NY 11747-4501 USA (2010). doi:10.1063/1.3457642. 10th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2010), Pohang, South Korea, JUN 13-17, 2010

  13. Ghnatios C, Chinesta F, Cueto E, Leygue A, Poitou A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion. Comp Part A Appl Sci Manufac 42(9):1169–1178. doi:10.1016/j.compositesa.2011.05.001. http://www.sciencedirect.com/science/article/pii/S1359835X11001369

  14. Grosso A, Jamali A, Locatelli M (2009) Finding maximin latin hypercube designs by iterated local search heuristics. Euro J Opera Res 197(2):541–547. doi:10.1016/j.ejor.2008.07.028

    Article  MATH  Google Scholar 

  15. Hamdaoui M, Le Quilliec G, Breitkopf P, Villon P (2013) Pod surrogates for real-time multi-parametric sheet metal forming problems. Int J Mater Form:1–22. doi:10.1007/s12289-013-1132-0

  16. den Hertog D, Stehouwer P (2002) Optimizing color picture tubes by high-cost nonlinear programming. Euro J Opera Res 140(2):197–211. doi:10.1016/S0377-2217(02)00063-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Hickernell F (1998) A generalized discrepancy and quadrature error bound. Math Comput 67(221):299–322. Cited By (since 1996) 213. http://www.scopus.com/inward/record.url?eid=2-s2.0-0032345316&partnerID=40&md5=0bea5ccccc3375b9d3193964c28c858c

  18. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Math Phys Sci 193(1033):281–297

    Article  MATH  Google Scholar 

  19. Honggang A (2010) Multi-objective optimization of tube hydroforming using hybrid global and local search. Ph.D. thesis. University of Windsor, Windsor

  20. Honggang A, Daniel G, Jennifer J, Lorenzo S (2013) Multi-objective optimization of loading path design in multi-stage tube forming using MOGA. Int J Material Form 6(1):125–135. doi:10.1007/s12289-011-1079-y

    Article  Google Scholar 

  21. Hu W, Enying L, Yao LG (2008) Optimization of draw- bead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mater Proc Technol 206(1-3):45–55. doi:10.1016/j.jmatprotec.2007.12.002. http://www.sciencedirect.com/science/article/pii/S0924013607013441

  22. Das I, Dennis J (1998) Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optima 8(3):631–657. doi:10.1137/S1052623496307510. http://epubs.siam.org/doi/abs/

  23. Ingarao G, Lorenzo RD (2010) A new progressive design methodology for complex sheet metal stamping operations: Coupling spatially differentiated restraining forces approach and multi-objective optimization. Comput Amp Struct 88(9-10):625–638. doi:10.1016/j.compstruc.2010.02.002. http://www.sciencedirect.com/science/article/pii/S0045794910000349

  24. Jerome S, Schiller Susannah B, Welch William J (1989) Designs for computer experiments. Technometrics 31(1):41–47. doi:10.1080/004017061989.10488474. http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1989.10488474

  25. Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383. doi:10.1023/A:1012771025575

  26. Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492. doi:10.1023/A:1008306431147

  27. Knowles J (2006) Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. Evol Comput, IEEE Trans 1:50–66. doi:10.1109/TEVC.2005.851274

    Article  MathSciNet  Google Scholar 

  28. Li M (2011) An improved kriging-assisted multi-objective genetic algorithm. J Mech Des 133(7):071,008–071,019

    Article  Google Scholar 

  29. Driesse LT, Stehouwer P, Wijker JJ (2002) Structural mass optimization of the engine frame of the ariane 5 esc-b. In: Proceedings of the European Conference on Spacecraft, Structures, Materials and Mechanical Testing

  30. Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis. University of Waterloo, Waterloo

    Google Scholar 

  31. Li M, Li G, Azarm S (2008) A kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Des 130(3):031,401–031,411

    Article  Google Scholar 

  32. Makinouchi A (1996) Sheet metal forming simulation in industry. J Mater Process Technol 60(1-4):19–26. doi:10.1016/0924-0136(96)02303-5. Proceedings of the 6th International Conference on Metal Forming

    Article  Google Scholar 

  33. McKay M, Beckman R, Conover W (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61

    Article  Google Scholar 

  34. Meng F, Labergere C, Lafon P, Daniel L (2013) Multi-objective optimization of gear forging process based on adaptive surrogate meta-models. AIP Conference Proceedings 1532(1):637–643. doi:10.1063/1.4806888 http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4806888

  35. Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Infer 43(3):381–402. doi:10.1016/0378-3758(94)00035-T

    Article  MathSciNet  MATH  Google Scholar 

  36. Panthi S, Ramakrishnan N, Pathak K, Chouhan J (2007) An analysis of springback in sheet metal bending using finite element method (fem). J Mater Process Technol 186(1-3):120–124. doi:10.1016/j.jmatprotec.2006.12.026

    Article  Google Scholar 

  37. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press

  38. Rikards RAJ (2004) Response surface method for solution of structural identification problems. Inverse Problems in Science and Engineering 12(1):59–70. Cited By (since 1996) 6

    Article  Google Scholar 

  39. S Motta R, Afonso S, Lyra P (2012) A modified nbi and nc method for the solution of n-multiobjective optimization problems. Struct Multidiscip Optim 46(2):239–259. doi:10.1007/s00158-011-0729-5

    Article  MathSciNet  Google Scholar 

  40. Sun G, Li G, Gong Z, Cui X, Yang X, Li Q (2010) Multiobjective robust optimization method for drawbead design in sheet metal forming. Mater Des 31(4):1917–1929. doi:10.1016/j.matdes.2009.10.050

    Article  Google Scholar 

  41. Wang Hu Li Enying LGY, Gang Z (2010) Optimisation of sheet metal forming processes by the use of adaptive intelligent sampling scheme based metamodelling method. Int J Mater Prod Technol 38(2-3):153–172

    Google Scholar 

  42. WW L, CFJ W (1997) Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39(2):171–179. Cited By (since 1996) 89

    Article  MathSciNet  Google Scholar 

  43. Xie Y (2011) Multi-Objective Optimal Approach Based on Kriging Model in a Deep Drawing Process. In: Zhu, G (ed) Advanced materials and computer science, PTS 1-3, Key Engineering Materials, vol 474-476, pp 205–210. Intelligent Informat Technol Appl Res Assoc; So Illinoic Univ Carbondale; Natl Univ Singapore, TRANS TECH PUBLICATIONS LTD, LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND. International Conference on Advanced Materials and Computer Science, Chengdu, PEOPLES R CHINA, MAY 01-02, 2011

  44. Yanmin X Robust design of sheet metal forming process based on kriging metamodel. In: AIP Conference Proceedings, vol 1383, pp 927–934

  45. Z Marciniak JL Duncan S (2002) The mechanics of sheet metal forming, 2 edn. Butterworth-Heinemann

  46. Zhou J, Wang B, Lin J, Fu L (2013) Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Archives of Civil and Mechanical Engineering. doi:10.1016/j.acme.2013.01.008

  47. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195. doi:10.1162/106365600568202

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted as part of the OASIS project, supported by OSEO within the contract FUI no. F1012003Z. The authors also acknowledge the support of Labex MS2T.The authors also acknowledge the support of Labex MS2T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hamdaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdaoui, M., Oujebbour, FZ., Habbal, A. et al. Kriging surrogates for evolutionary multi-objective optimization of CPU intensive sheet metal forming applications. Int J Mater Form 8, 469–480 (2015). https://doi.org/10.1007/s12289-014-1190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1190-y

Keywords

Navigation