Abstract
The aim of this paper is to present a method to perform evolutionary multi-objective optimization of CPU intensive sheet metal forming applications using kriging surrogates. Two main ingredients are employed to achieve this goal. First of all, given a learning dataset, the kriging surrogate is designed to minimize the leave-one-out error. Secondly, during the optimization, new data points are added to the learning set to update the surrogate locally (by well chosen points on the current Pareto front) and globally (by maximum kriging variance points over the entire design landscape). The ability of the method to capture Pareto fronts with accuracy is demonstrated on the well-known ZDT test functions. The method is then tested on a real-life problem, the simultaneous minimization of springback and failure for a three-dimensional CPU intensive high strength steel stamping industrial use case.
Similar content being viewed by others
Notes
An attempt to use a parallel version of LS-DYNA was made on the INRIA cluster but it was too complicated to manage that is why a serial version was used
References
AIJ Forrester A, Sóbester AJK (2008) Engineering Design via Surrogate Modelling: A Practical Guide, vol 1. J. Wiley, Hoboken
Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: A step towards efficient shape optimization. Comput Methods Appl Mech Eng 268(0):178–193. doi:10.1016/j.cma.2013.09.003. http://www.sciencedirect.com/science/article/pii/S0045782513002284
An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manufac Technol 60(9-12):1017–1030. doi:10.1007/s00170-011-3648-0
Chinesta Francisco AA, Elias C (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350
Coello C, Lamont G, Van Veldhuisen D (2007) Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and evolutionary computation series. Springer Science+Business Media, LLC. http://books.google.fr/books?id=rXIuAMw3lGAC
Corporation L.S.T. (2011) Ls-dyna. http://www.lstc.com/products/ls-dyna
Couckuyt I, Forrester A, Gorissen D, Turck FD, Dhaene T (2012) Blind kriging: Implementation and performance analysis. Adv Eng Soft 49(0):1–13. doi:10.1016/j.advengsoft.2012.03.002 10.1016/j.advengsoft.2012.03.002. http://www.sciencedirect.com/science/article/pii/S0965997812000476
Deb K (2008) Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback series. Wiley. http://books.google.fr/books?id=U0dnPwAACAAJ
Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel HP (eds) Parallel Problem Solving from Nature PPSN VI. Springer, Berlin, pp 849–858
Ehrgott M (2005) Multicriteria Optimization. Lectures notes in economics and mathematical systems. Springer. http://books.google.fr/books?id=yrZw9srrHroC
Dune F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press Inc, New York
Fourment L, Ducloux R, Marie S, Ejday M, Monnereau D, Masse T, Montmitonnet P Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms. In: Barlat F, Moon YH, Lee MG (Eds) Numiform 2010, VOLS 1 AND 2: Dedicated to Professor O. C. Zienkiewicz (1921-2009), AIP Conference Proceedings vol. 1252,pp. 833–840.Korean Soc Technol Plastic; Postech, Grad Inst ferrous Technol; Pusan Natl Univ, ERC Net Shape & Die Mfg; Korea Inst Ind Technol; Korea Inst Mat Sci; POSCO; POSTECH, World Class Univ Progrem, GIFT, Amer Inst Physics, 2 Huntington Quadrangle, STE 1NO1, Melville, NY 11747-4501 USA (2010). doi:10.1063/1.3457642. 10th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2010), Pohang, South Korea, JUN 13-17, 2010
Ghnatios C, Chinesta F, Cueto E, Leygue A, Poitou A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion. Comp Part A Appl Sci Manufac 42(9):1169–1178. doi:10.1016/j.compositesa.2011.05.001. http://www.sciencedirect.com/science/article/pii/S1359835X11001369
Grosso A, Jamali A, Locatelli M (2009) Finding maximin latin hypercube designs by iterated local search heuristics. Euro J Opera Res 197(2):541–547. doi:10.1016/j.ejor.2008.07.028
Hamdaoui M, Le Quilliec G, Breitkopf P, Villon P (2013) Pod surrogates for real-time multi-parametric sheet metal forming problems. Int J Mater Form:1–22. doi:10.1007/s12289-013-1132-0
den Hertog D, Stehouwer P (2002) Optimizing color picture tubes by high-cost nonlinear programming. Euro J Opera Res 140(2):197–211. doi:10.1016/S0377-2217(02)00063-2
Hickernell F (1998) A generalized discrepancy and quadrature error bound. Math Comput 67(221):299–322. Cited By (since 1996) 213. http://www.scopus.com/inward/record.url?eid=2-s2.0-0032345316&partnerID=40&md5=0bea5ccccc3375b9d3193964c28c858c
Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Math Phys Sci 193(1033):281–297
Honggang A (2010) Multi-objective optimization of tube hydroforming using hybrid global and local search. Ph.D. thesis. University of Windsor, Windsor
Honggang A, Daniel G, Jennifer J, Lorenzo S (2013) Multi-objective optimization of loading path design in multi-stage tube forming using MOGA. Int J Material Form 6(1):125–135. doi:10.1007/s12289-011-1079-y
Hu W, Enying L, Yao LG (2008) Optimization of draw- bead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mater Proc Technol 206(1-3):45–55. doi:10.1016/j.jmatprotec.2007.12.002. http://www.sciencedirect.com/science/article/pii/S0924013607013441
Das I, Dennis J (1998) Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optima 8(3):631–657. doi:10.1137/S1052623496307510. http://epubs.siam.org/doi/abs/
Ingarao G, Lorenzo RD (2010) A new progressive design methodology for complex sheet metal stamping operations: Coupling spatially differentiated restraining forces approach and multi-objective optimization. Comput Amp Struct 88(9-10):625–638. doi:10.1016/j.compstruc.2010.02.002. http://www.sciencedirect.com/science/article/pii/S0045794910000349
Jerome S, Schiller Susannah B, Welch William J (1989) Designs for computer experiments. Technometrics 31(1):41–47. doi:10.1080/004017061989.10488474. http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1989.10488474
Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383. doi:10.1023/A:1012771025575
Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492. doi:10.1023/A:1008306431147
Knowles J (2006) Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. Evol Comput, IEEE Trans 1:50–66. doi:10.1109/TEVC.2005.851274
Li M (2011) An improved kriging-assisted multi-objective genetic algorithm. J Mech Des 133(7):071,008–071,019
Driesse LT, Stehouwer P, Wijker JJ (2002) Structural mass optimization of the engine frame of the ariane 5 esc-b. In: Proceedings of the European Conference on Spacecraft, Structures, Materials and Mechanical Testing
Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis. University of Waterloo, Waterloo
Li M, Li G, Azarm S (2008) A kriging metamodel assisted multi-objective genetic algorithm for design optimization. J Mech Des 130(3):031,401–031,411
Makinouchi A (1996) Sheet metal forming simulation in industry. J Mater Process Technol 60(1-4):19–26. doi:10.1016/0924-0136(96)02303-5. Proceedings of the 6th International Conference on Metal Forming
McKay M, Beckman R, Conover W (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61
Meng F, Labergere C, Lafon P, Daniel L (2013) Multi-objective optimization of gear forging process based on adaptive surrogate meta-models. AIP Conference Proceedings 1532(1):637–643. doi:10.1063/1.4806888 http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4806888
Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Infer 43(3):381–402. doi:10.1016/0378-3758(94)00035-T
Panthi S, Ramakrishnan N, Pathak K, Chouhan J (2007) An analysis of springback in sheet metal bending using finite element method (fem). J Mater Process Technol 186(1-3):120–124. doi:10.1016/j.jmatprotec.2006.12.026
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press
Rikards RAJ (2004) Response surface method for solution of structural identification problems. Inverse Problems in Science and Engineering 12(1):59–70. Cited By (since 1996) 6
S Motta R, Afonso S, Lyra P (2012) A modified nbi and nc method for the solution of n-multiobjective optimization problems. Struct Multidiscip Optim 46(2):239–259. doi:10.1007/s00158-011-0729-5
Sun G, Li G, Gong Z, Cui X, Yang X, Li Q (2010) Multiobjective robust optimization method for drawbead design in sheet metal forming. Mater Des 31(4):1917–1929. doi:10.1016/j.matdes.2009.10.050
Wang Hu Li Enying LGY, Gang Z (2010) Optimisation of sheet metal forming processes by the use of adaptive intelligent sampling scheme based metamodelling method. Int J Mater Prod Technol 38(2-3):153–172
WW L, CFJ W (1997) Columnwise-pairwise algorithms with applications to the construction of supersaturated designs. Technometrics 39(2):171–179. Cited By (since 1996) 89
Xie Y (2011) Multi-Objective Optimal Approach Based on Kriging Model in a Deep Drawing Process. In: Zhu, G (ed) Advanced materials and computer science, PTS 1-3, Key Engineering Materials, vol 474-476, pp 205–210. Intelligent Informat Technol Appl Res Assoc; So Illinoic Univ Carbondale; Natl Univ Singapore, TRANS TECH PUBLICATIONS LTD, LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND. International Conference on Advanced Materials and Computer Science, Chengdu, PEOPLES R CHINA, MAY 01-02, 2011
Yanmin X Robust design of sheet metal forming process based on kriging metamodel. In: AIP Conference Proceedings, vol 1383, pp 927–934
Z Marciniak JL Duncan S (2002) The mechanics of sheet metal forming, 2 edn. Butterworth-Heinemann
Zhou J, Wang B, Lin J, Fu L (2013) Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Archives of Civil and Mechanical Engineering. doi:10.1016/j.acme.2013.01.008
Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195. doi:10.1162/106365600568202
Acknowledgments
This research was conducted as part of the OASIS project, supported by OSEO within the contract FUI no. F1012003Z. The authors also acknowledge the support of Labex MS2T.The authors also acknowledge the support of Labex MS2T.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamdaoui, M., Oujebbour, FZ., Habbal, A. et al. Kriging surrogates for evolutionary multi-objective optimization of CPU intensive sheet metal forming applications. Int J Mater Form 8, 469–480 (2015). https://doi.org/10.1007/s12289-014-1190-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12289-014-1190-y