Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Digitized RF-over-fiber as a cost-effective and energy-efficient backhaul option for wireless communications

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Digitized RF-over-fiber technique based on bandpass sampling theory is studied as an alternative of analog radio-over-fiber to deliver wireless signals, taking advantage of digital optical link and realizing simpler base station architecture. In this paper, we present an overview of our recent research on digitized radio-over-fiber (RoF) technique, including discussions on the designing issues and possible solutions, proof-of-concept demonstrations and experimental results. Then, we examine the energy efficiency of the digitized RoF technique using a generic base station (BS) power model and compare with conventional BS designs. Based on the estimated energy consumption per square meter, digitized RoF technique has advantage for larger cell size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Huawei Technologies Co. Ltd. (2009) Improving energy efficiency, lower CO2 emission and TCO. Whitepaper, Huawei energy efficiency solution, www.huawei.com/en/static/hw-076768.pdf. Accessed Aug 2010

  2. Lange C, Gladisch A (2009) On the energy consumption of FTTH access networks. In Conference of Optical Fiber Communication/NFOEC, 22–26 March 2009

  3. Mitchell RJE (2006) Techniques for radio over fiber networks, Proc. 19th Annu. Meeting IEEE Lasers an Electro-Optics Society (LEOS), pp. 346–347

  4. Dayoub I (2006) Radio over fiber networks: low cost solution for different applications and emerging technologies. ICT 2:2537–2542

    Google Scholar 

  5. Kurniawan T, Nirmalathas A (2006) Performance analysis of optimized millimetre-wave fibre radio links. IEEE Trans Microw Theory Technol 54(2):921–928

    Article  Google Scholar 

  6. Fernando XN, Sesay AB (2000) Higher order adaptive filter characterization of microwave fibre optic link nonlinearity. Proc SPIE Photon 3927–06:39–49

    Article  Google Scholar 

  7. Tanaka S, Taguchi N, Kimura T, Atsumi Y (2006) A predistortion-type equi-path linearizer designed for radio-on-fiber system. IEEE Trans Microw Theory Technol 54(2):938–944

    Article  Google Scholar 

  8. Fernando XN, Sesay AB (2001) Fibre-wireless channel estimation using correlation properties of PN sequences. Can J Electr Comput Eng 26(2):43–44

    Google Scholar 

  9. Lim C, Nirmalathas A (2007) Intermodulation distortion improvement for fiber–radio applications incorporating OSSB + C modulation in an optical integrated-access environment. J Light Technol 25(6):1602–1612

    Article  Google Scholar 

  10. Meyer (1989) Using fibre optics with analogue RF signals. Proc. 39th IEEE Vehicular Technology Conference, San Francisco, vol. 1, pp. 398–400

  11. Wala PM (1993 May) A new microcell architecture using digital optical transport, Proc. 43rd IEEE Trans. Veh. Technol. Conf., pp. 585–588

  12. ADC Telecommunications Inc. (2002) Digivance™—ADC's Digital Advantage for Improving Wireless Capacity, Coverage and Customer Retention http://adce13.adc.com/adcindia/site_images/carrier/wireless/Digivance%20LRCS.pdf. Accessed Sept 2009

  13. Nirmalathas A, Gamage PA, Lim C, Novak D, Waterhouse RB, Yang Y (2009) Digitized RF over fiber transport. Microw Mag 10:75–81

    Article  Google Scholar 

  14. Yang Y, Lim C, Nirmalathas A (2010) Multi-channel digitized RF-over-fiber transmission based on bandpass sampling and FPGA. J Light Technol 58(11):3181–3188

    Google Scholar 

  15. Yang Y, Lim C, Nirmalathas A (2011) Experimental demonstration of multi-service hybrid fiber-radio system using digitized RF-over-fiber technique. J Light Technol 29(14):2131–2137

    Article  Google Scholar 

  16. Zayed AI (1993) Advances in Shannon's sampling theory. CRC Press

  17. Vaughan RG, Scott NL, White DR (1991) The theory of bandpass sampling. IEEE Trans Signal Process 39(9):1973–1984

    Article  Google Scholar 

  18. Diniz PSR (2010) Digital signal processing: system analysis and design. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  19. Tung-Sang N, Wong N (2001) An efficient algorithm for downconverting multiple bandpass signals using bandpass sampling. IEEE ICC 3:910–914

    Google Scholar 

  20. Tseng C-H, Chou S-C (2006) Direct downconversion of multiband RF signals using bandpass sampling. IEEE Trans Wirel Commun 5(1):72–76

    Article  Google Scholar 

  21. Widrow B, Kollár I (2008) Quantization noise: roundoff error in digital computation, signal processing, control, and communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Lohning M, Fettweis G (2007) The effects of aperture jitter and clock jitter in wideband ADCs. Comput Stand Interfaces 29(1):11–18

    Article  Google Scholar 

  23. Walklin S, Conradi J (1999) Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems. J Light Technol 17(11):2235–2248

    Article  Google Scholar 

  24. Gagliardi RM, Karp S (1976) Optical communications. Wiley InterScience, New York

    Google Scholar 

  25. Commisson E (2008) Climate change: commission welcomes final adoption of Europe's climate and energy package—European Commisson press release. EUROPA, Brussels

    Google Scholar 

  26. Chowdhury P, Tornatore M, Sarkar S, Mukherjee B (2010) Building a green wireless-optical broadband access network (WOBAN). J Light Technol 28:2219–2229

    Article  Google Scholar 

  27. Pickavet M, Vereecken W, Demeyer S, Audenaert P, Vermeulen B, Develder C, Colle D, Dhoedt B, and Demeester P (2008) Worldwide energy needs for ICT: the rise of power-aware networking. In: IEEE 2nd International Symposium on ANTS 2008

  28. Ericsson (2007) Sustainable energy use in mobile communications, White paper. www.connectedurbandevelopment.org/downloads/download/sustainable-energy-use-in-mobile-communications-aug-2007. Accessed Oct 2010

  29. Etoh M, Ohya T, Nakayama Y (2008) Energy consumption issues on mobile network Systems, Proc. International Symposium Issues on Mobile Network Systems, pp. 365–368

  30. Deruyck M, Vereecken W, Tanghe E, Joseph W, Pickavet M, Martens L, Demeester P (2010) Power consumption in wireless access networks. Proc. 2010 European Wireless Conference, pp. 924–931

  31. Arnold O, Richter F, Fettweis G, Blume O (2010) Power consumption modeling of different base station types in heterogeneous cellular networks. Proc. Future Network and Mobile Summit 2010, pp. 1–8

  32. Texas Instruments (2010) Communication infrastructure guide. www.ti.com/lit/sl/sstc001h/sstc001h.pdf. Accessed Oct 2010

  33. Motorola (2012) Horizon 3G-nx macro outdoor. www.motorola.com/web/…Files/Datasheet_3G-nx_APM.pdf. Accessed Oct 2010

  34. Lim C, Nirmalathas A, Bakaul M, Gamage P, Lee KL, Yang Y, Novak D, Waterhouse R (2010) Fiber-wireless networks and subsystem technologies. Jounal of Lightwave Technology 28(4):390–405

    Article  Google Scholar 

  35. Wake D, Webster M, Wimpenny G, Beacham K, Crawford L (2004) Radio over fiber for mobile communications. Proc. IEEE International Topical Meeting on Microwave Photonics, pp. 159–160

  36. Richter F, Fehske AJ, Fettweis GP (2009) Energy efficiency aspects of base station deployment strategies for cellular networks. Proc. Vehicular Technology Conference Fall (VTC 2009-Fall), pp. 1–5

  37. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  38. Lee WCY (1990) Mobile cellular telecommunications systems. McGraw-Hill, New York

    Google Scholar 

  39. Fehske AJ, Richter F, Fettweis GP (2009) Energy efficiency improvements through micro sites in cellular mobile radio networks. Proc. GLOBECOM Workshops, pp. 1–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampalavanapillai Nirmalathas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Nirmalathas, A. & Lim, C. Digitized RF-over-fiber as a cost-effective and energy-efficient backhaul option for wireless communications. Ann. Telecommun. 68, 23–39 (2013). https://doi.org/10.1007/s12243-012-0319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0319-6

Keywords

Navigation