Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Feed and fly control of visual scanpaths for foveation image processing

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

Foveation-based processing and communication systems can exploit a more efficient representation of images and videos by removing or reducing visual information redundancy, provided that the sequence of foveation points, the visual scanpath, can be determined. However, one point that is neglected by the great majority of foveation models is the “noisy” variation of the random visual exploration exhibited by different observers when viewing the same scene, or even by the same subject along different trials. Here, a model for the generation and control of scanpaths that accounts for such issue is presented. In the model, the sequence of fixations and gaze shifts is controlled by a saliency-based, information foraging mechanism implemented through a dynamical system switching between two states, “feed” and “fly.” Results of the simulations are compared with experimental data derived from publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. van Beers R (2007) The sources of variability in saccadic eye movements. J Neurosci 27(33):8757–8770

    Article  Google Scholar 

  2. Begum M, Karray F (2011) Visual attention for robotic cognition: a survey. IEEE Trans Auton Mental Develop 3(1):92–105

    Article  Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine learning (Information Science and Statistics). Springer, New York

    Google Scholar 

  4. Boccignone G, Chianese A, Moscato V, Picariello A (2005) Foveated shot detection for video segmentation. IEEE Trans Circuits Syst Video Technol 15(3):365–377

    Article  Google Scholar 

  5. Boccignone G, Ferraro M (2004) Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications 331(1–2):207–218

    Article  Google Scholar 

  6. Boccignone G, Ferraro M (2011) Modelling eye-movement control via a constrained search approach. In: Proceedings of 3rd European workshop on visual information processing (EUVIP 2011). IEEE Press, Piscataway, pp 235–240

    Chapter  Google Scholar 

  7. Boccignone G, Marcelli A, Napoletano P, Di Fiore G, Iacovoni G, Morsa S (2008) Bayesian integration of face and low-level cues for foveated video coding. IEEE Trans Circuits Syst Video Technol 18(12):1727–1740

    Article  Google Scholar 

  8. Borji A, Itti L (2012) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.89

  9. Brockmann D, Geisel T (2000) The ecology of gaze shifts. Neurocomputing 32(1):643–650

    Article  Google Scholar 

  10. Cerf M, Frady E, Koch C (2009) Faces and text attract gaze independent of the task: experimental data and computer model. J Vis 9(12):10.1–10.15

    Google Scholar 

  11. Cerf M, Harel J, Einhäuser W, Koch C (2008) Predicting human gaze using low-level saliency combined with face detection. In: Advances in neural information processing systems, vol 20. MIT Press, Cambridge, pp 545–552

    Google Scholar 

  12. Chambers J, Mallows C, Stuck B (1976) A method for simulating stable random variables. J Am Stat Assoc 71(354):340–344

    Article  MathSciNet  MATH  Google Scholar 

  13. Churchland P, Ramachandran V, Sejnowski T (1994) A critique of pure vision. MIT Press, Cambridge

    Google Scholar 

  14. Codling E, Plank M, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813

    Article  Google Scholar 

  15. Cotsaces C, Nikolaidis N, Pitas I (2006) Video shot detection and condensed representation. a review. IEEE Signal Process Mag 23(2):28–37

    Article  Google Scholar 

  16. Da Luz M, Buldyrev S, Havlin S, Raposo E, Stanley H, Viswanathan G (2001) Improvements in the statistical approach to random Lévy flight searches. Physica A: Statistical Mechanics and its Applications 295(1–2):89–92

    Article  MATH  Google Scholar 

  17. Ellis S, Stark L (1986) Statistical dependency in visual scanning. Hum Factors 28(4):421–438

    Google Scholar 

  18. Frintrop S, Rome E, Christensen H (2010) Computational visual attention systems and their cognitive foundations: a survey. ACM Trans Appl Percept 7(1):1–39

    Article  Google Scholar 

  19. Gnedenko B, Kolmogórov A (1954) Limit distributions for sums of independent random variables. Addison-Wesley, Reading

    MATH  Google Scholar 

  20. Harel J, Koch C, Perona P (2007) Graph-based visual saliency. In: Advances in neural information processing systems, vol 19. MIT Press, Cambridge, pp 545–552

    Google Scholar 

  21. Harris C (1998) On the optimal control of behaviour: a stochastic perspective. J Neurosci Methods 83(1):73–88

    Article  Google Scholar 

  22. Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J (2011) Eye tracking: a comprehensive guide to methods and measures. Oxford University Press, Oxford

    Google Scholar 

  23. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Proceedings CVPR 07, vol 1, pp 1–8

  24. Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13(10):1304–1318

    Article  Google Scholar 

  25. Itti L, Baldi P (2009) Bayesian surprise attracts human attention. Vis Res 49(10):1295–1306

    Article  Google Scholar 

  26. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  27. Jackson, J (1958) Evolution and dissolution of the nervous system (Croonian lectures). Published in parts in the British Medical Journal, Lancet pp 5–75

  28. Klein R, MacInnes W (1999) Inhibition of return is a foraging facilitator in visual search. Psychol Sci 10(4):346–352

    Article  Google Scholar 

  29. Koutrouvelis I (1980) Regression-type estimation of the parameters of stable laws. J Am Stat Assoc 75(372):918–928

    Article  MathSciNet  MATH  Google Scholar 

  30. Kowler E (2011) Eye movements: the past 25 years. Vis Res 51(13):1457–1483. 50th Anniversary Special Issue of Vision Research - vol 2

    Google Scholar 

  31. Kustov A, Robinson D (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77

    Article  Google Scholar 

  32. Lee J, De Simone F, Ebrahimi T (2011) Efficient video coding based on audio-visual focus of attention. J Vis Commun Image Represent 22(8):704–711

    Article  Google Scholar 

  33. Neal R (1993) Probabilistic inference using Markov chain Monte Carlo methods. Department of Computer Science, University of Toronto. http://www.cs.utoronto.ca/radford/

  34. Nolan J (1997) Numerical calculation of stable densities and distribution functions. Commun Stat Stoch Models 13(4):759–774

    Article  MathSciNet  MATH  Google Scholar 

  35. Noton D, Stark L (1971) Scanpaths in eye movements during pattern perception. Science 171(968):308–311

    Article  Google Scholar 

  36. Plank M, James A (2008) Optimal foraging: Lévy pattern or process? J R Soc Interface 5(26):1077

    Article  Google Scholar 

  37. Privitera CM, Stark LW (2000) Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Trans Pattern Anal Mach Intell 22(9):970–982

    Article  Google Scholar 

  38. Reynolds A (2008) Optimal random Lévy-loop searching: new insights into the searching behaviours of central-place foragers. EPL (Europhysics Letters) 82(2):20001.1–20001.6

    Article  Google Scholar 

  39. Schütz A, Braun D, Gegenfurtner K (2011) Eye movements and perception: a selective review. J Vis 11(5):9

    Article  Google Scholar 

  40. Seo H, Milanfar P (2009) Static and space-time visual saliency detection by self-resemblance. J Vis 9(12):1–27

    Article  Google Scholar 

  41. Stark L, Privitera C, Yang H, Azzariti M, Ho Y, Blackmon T, Chernyak D (2001) Representation of human vision in the brain: how does human perception recognize images? J Electron Imaging 10:123–151

    Article  Google Scholar 

  42. Stephen D, Mirman D, Magnuson J, Dixon J (2009) Lévy-like diffusion in eye movements during spoken-language comprehension. Phys Rev E 79(5):056114.1–056114.6

    Article  Google Scholar 

  43. Tatler B, Vincent B (2009) The prominence of behavioural biases in eye guidance. Vis Cogn 17(6–7):1029–1054

    Article  Google Scholar 

  44. Vandekerckhove J, Tuerlinckx F, Lee M (2011) Hierarchical diffusion models for two-choice response times. Psychol Methods 16(1):44

    Article  Google Scholar 

  45. Viswanathan G, Afanasyev V, Buldyrev S, Havlin S, Da Luz M, Raposo E, Stanley H (2000) Lévy flights in random searches. Physica A: Statistical Mechanics and its Applications 282(1–2):1–12

    Article  Google Scholar 

  46. Wang Z, Lu L, Bovik AC (2003) Foveation scalable video coding with automatic fixation selection. IEEE Trans Image Process 12:1–12

    Article  MathSciNet  MATH  Google Scholar 

  47. You J, Reiter U, Hannuksela M, Gabbouj M, Perkis A (2010) Perceptual-based quality assessment for audio–visual services: a survey. Signal Process Image Commun 25(7):482–501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Boccignone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccignone, G., Ferraro, M. Feed and fly control of visual scanpaths for foveation image processing. Ann. Telecommun. 68, 201–217 (2013). https://doi.org/10.1007/s12243-012-0316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-012-0316-9

Keywords