Abstract
Acrylamide is a probable carcinogen found in processed potato products. The compound is formed at elevated temperatures by the Maillard reaction from two primary precursors - reducing sugars (fructose and glucose) and asparagine. Significant advances have been made in reducing acrylamide formation by selecting varieties with low precursor concentrations through conventional breeding or genetic modification techniques. However, acrylamide in many of the traditional varieties processed for fries or chips is sometimes found at elevated levels. Both agronomic and storage practices can significantly influence glucose, fructose, and asparagine concentrations and therefore the potential to form acrylamide during processing. This summary of a symposium presentation given at the 99th Annual Potato Association of American Meeting is to provide a general overview of previous studies that have examined the effects of agronomic factors such as nutrient and water management and storage factors such as temperature and duration on acrylamide precursors and/or acrylamide in processed potato products. A better understanding of how these factors affect acrylamide precursors is a first step in minimizing acrylamide formation during processing and improving the quality of processed potato products.
Resumen
Acrilamida es un posible carcinogénico encontrado en productos de papa procesada. El compuesto se forma a temperaturas elevadas mediante la reacción de Maillard de dos precursores primarios: azúcares reductores (fructosa y glucosa) y asparagina. Se han hecho avances significativos en reducir la formación de acrilamida con la selección de variedades con bajas concentraciones del precursor a través de mejoramiento convencional o técnicas de modificación genética. No obstante, algunas veces se encuentra la acrilamida a niveles elevados en muchas de las variedades tradicionales procesadas para fritura. Tanto las prácticas agronómicas como las de almacenamiento pueden influenciar significativamente las concentraciones de glucosa, fructosa y asparagina, y en consecuencia el potencial para formar acrilamida durante el procesamiento. Este resumen de la presentación del simposio efectuado durante la 99 Reunión Anual de la asociación Americana de la Papa, es para proporcionar una visión general de estudios previos que han examinado los efectos de los factores agronómicos, tales como el manejo de nutrientes y agua, y factores de almacenamiento como la temperatura y la duración de los precursores de la acrilamida en los productos de papa procesada. Un mejor entendimiento de cómo estos factores afectan a los precursores de la acrilamida, es un primer paso en la minimización de la formación de acrilamida durante el procesamiento y en el mejoramiento de la calidad de los productos de la papa procesada.
Similar content being viewed by others
References
Advant, S. 2016. A quicker way to detect acrylamide in French fries. USDA Ag Research Magazine. https://agresearchmag.ars.usda.gov/2016/nov/frenchfries/#printdiv. Accessed 17 December 2016.
Amrein, T.M., S. Bachmann, A. Noti, M. Biedermann, M.F. Barbosa, S. Biedermann-Brem, K. Grob, A. Keiser, P. Realini, F. Escher, and R. Amado. 2003. Potential of acrylamide formation, sugars, and free asparagine in potatoes: A comparison of cultivars and farming systems. Journal of Agricultural and Food Chemistry 51:5556-5560.
Becalski, A., B.P. Lau, D. Lewis, and S.W. Seaman. 2003. Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry 51: 802–808. https://doi.org/10.1021/jf020889y.
Bethke, P.C. 2014. Ethylene in the atmosphere of commercial potato (Solanum tuberosum) storage bins and potential effects on tuber respiration rate and fried chip color. American Journal of Potato Research 91: 688–695. https://doi.org/10.1007/s12230-014-9400-1.
Bethke, P.C., and A.J. Bussan. 2013. Acrylamide in processed potato products. American Journal of Potato Research 90: 403–424. https://doi.org/10.1007/s12230-013-9321-4.
Bethke, P.C., and J.S. Busse. 2010. Vine-kill treatment and harvest date have persistent effects on tuber physiology. American Journal of Potato Research 87: 299–309. https://doi.org/10.1007/s12230-010-9137-4.
Brandt, T., and N. Olsen. 2013. Acrylamide concentrations in six potato cultivars at harvest and in storage. American Journal of Potato Research 90: 127.
Brandt, T., N. Olsen, and M. Thornton. 2016. Effects of nitrogen fertilizer management on postharvest performance of Russet Burbank and three low acrylamide potato clones. American Journal of Potato Research 93: 123–124.
Carew, R., M. Khakbazan, and R. Mohr. 2009. Cultivar developments, fertilizer inputs, environmental conditions, and yield determination for potatoes in Manitoba. American Journal of Potato Research 86: 442–455. https://doi.org/10.1007/s12230-009-9099-6.
Chuda, Y., H. Ono, H. Yada, A. Ohara-Takada, C. Matsuura-Endo, and M. Mori. 2003. Effects of physiological changes in potato tubers (Solanum tuberosum L.) after low temperature storage on the level of acrylamide formed in potato chips. Bioscience, Biotechnology, and Biochemistry 67: 1188–1190. https://doi.org/10.1271/bbb.67.1188.
Daniels-Lake, B.J. 2013. The combined effect of CO2 and ethylene sprout inhibitor on the fry colour of stored potatoes (Solanum tuberosum L.). Potato Research 56: 115–126. https://doi.org/10.1007/s11540-013-9234-0.
Daniels-Lake, B.J., and R.K. Prange. 2009. The interaction effect of carbon dioxide and ethylene in the storage atmosphere on potato fry color is dose-related. Hortscience 44: 1641–1644.
De Wilde, T., B. De Meulenaer, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, J.M. Degroodt, and R. Verhe. 2005. Influence of storage practices on acrylamide formation during potato frying. Journal of Agricultural and Food Chemistry 53: 6550–6557. https://doi.org/10.1021/jf050650s.
De Wilde, T., B. De Meulenaer, F. Mestdagh, Y. Govaert, S. Vandeburie, W. Ooghe, S. Fraselle, K. Demeulemeester, C. Van Peteghem, A. Calus, J.M. Degroodt, and R. Verhe. 2006. Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. Journal of Agricultural and Food Chemistry 54: 404–408. https://doi.org/10.1021/jf0521810.
Elmore, J.S., D.S. Mottram, N. Muttucumaru, A.T. Dodson, M.A. Parry, and N.G. Halford. 2007. Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation. Journal of Agricultural and Food Chemistry 55: 5363–5366. https://doi.org/10.1021/jf070447s.
Elmore, J.S., A.T. Dodson, N. Muttucumaru, N.G. Halford, M.A. Parry, and D.S. Mottram. 2010. Effects of sulphur nutrition during potato cultivation on the formation of acrylamide and aroma compounds during cooking. Food Chemistry 122: 753–760. https://doi.org/10.1016/j.foodchem.2010.03.049.
European Food Safety Authority. 2015. Acrylamide. https://www.efsa.europa.eu/en/topics/topic/acrylamide. Accessed 12 December 2016.
Gause, K. 2014. Effect of nitrogen and potassium on potato yield, quality and acrylamide forming potential. Electronic Theses and Dissertations. Paper 2170. http://digitalcommons.library.umaine.edu/etd/2170.
Gerendás, J., F. Heuser, and B. Sattelmacher, B. 2007. Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. Journal of Plant Nutrition 30:1499–1516. doi: https://doi.org/10.1080/01904160701555846.
Gokmen, V., B. Akbudak, A. Serpen, J. Acar, Z.M. Turan, and A. Eris. 2007. Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formations upon frying. European Food Research and Technology 224: 681–687. https://doi.org/10.1007/s00217-006-0357-2.
Halford, N.G., N. Muttucumaru, T.Y. Curtis, and M.A. Parry. 2007. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Additives and Contaminants 24 (Suppl. 1): 26–36. https://doi.org/10.1080/02652030701403093.
Halford, N.G., T.Y. Curtis, N. Muttucumaru, J. Postles, J.S. Elmore, and D.S. Mottram. 2012. The acrylamide problem: A plant and agronomic science issue. Journal of Experimental Botany 63: 2841–2851. https://doi.org/10.1093/jxb/ers011.
Herlihy, M., and P.J. Carroll. 1969. Effects of N, P, and K and their interactions on yield, tuber blight and quality of potatoes. Journal of the Science of Food and Agriculture 20: 513–517. https://doi.org/10.2134/agronj1977.00021962006900030023x.
Herman, T.J., B. Shafii, S.L. Love, and R.B. Dwelle. 1995. Influence of crop management factors on chipping potato maturity and storage processing performance. Journal of the Science of Food and Agriculture 68: 51–58.
Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016a. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Postharvest Biology and Technology 121: 106–117.
Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016b. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). Planta 245: 1–20. https://doi.org/10.1007/s00425-016-2626-z.
Iritani, W.M. and L.D. Weller. 1980. Sugar development in potatoes. Washington State University Cooperative Extension Bulletin no. 0717, 16 pp.
Knowles, N.R., M.J. Pavek, C. Hiles, L.O. Knowles and Z. Holden. 2010. Nitrogen management affects tuber physiological maturity and retention of processing quality. Proceedings of the 94th Annual Meeting of the Potato Association of America. Am. J. Pot. Res. 88:49.
Knowles, N.R., M.J. Pavek, and L.O. Knowles. 2015a. Nitrogen modulates physiological maturity and tuber N content to affect postharvest processing and nutritional qualities. Proceedings of the 98th Annual Meeting of the Potato Association of America. Am. J. Pot. Res 92:196.
Knowles, N.R. Pavek, M.J. and Knowles, L.O. 2015b. Developmental profiles, nitrogen use and postharvest quality of alpine and sage russet potatoes in the Columbia Basin. Annual Washington and Oregon potato conference, Jan. 27–30, Kennwick, WA. pp. 37–50. http://www.nwpotatoresearch.com/IPMStuff/PDFs/Proceedings2015.pdf. Accessed 12 December 2016.
Kolbe, H., K. Muller, G. Olteanu, and T. Gorea. 1995. Effects of nitrogen, phosphorus and potassium fertilizer treatments on weight loss and changes in chemical composition of potato tubers stored at 4°C. Potato Research 38: 97–107. https://doi.org/10.1007/BF02358074.
Kumar, D., B.P. Singh, and P. Kumar. 2004. An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology 145: 247–256. https://doi.org/10.1111/j.1744-7348.2004.tb00380.x.
Kumar, P., S.K. Pandey, B.P. Singh, S.V. Singh, S. V, and D. Kumar. 2007. Influence of source and time of potassium application on potato growth, yield, economics and crisp quality. Potato Research 50: 1–13. https://doi.org/10.1007/s11540-007-9023-8.
Lea, P.J., L. Sodek, M.A. Parry, P.R. Shewry, and N.G. Halford. 2007. Asparagine in plants. Annals of Applied Biology 150: 1–26. https://doi.org/10.1111/j.1744-7348.2006.00104.x.
Matsuura-Endo, C., A. Ohara-Takada, Y. Chuda, H. Ono, H. Yada, M. Yoshida, A. Kobayashi, S. Tsuda, S. Takigawa, T. Noda, H. Yamauchi, and M. Mori. 2006. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Bioscience, Biotechnology, and Biochemistry 70: 1173–1180. https://doi.org/10.1271/bbb.70.1173.
Medeiros Vinci, R., F. Mestdagh, and B. De Meulenaer. 2012. Acrylamide formation in fried potato products - present and future, a critical review on mitigation strategies. Food Chemistry 133: 1138–1154. https://doi.org/10.1016/j.foodchem.2011.08.001.
Morales, F., E. Capuano, and V. Fogliano. 2008. Mitigation strategies to reduce acrylamide formation in fried potato products. Annals of the New York Academy of Sciences 1126: 89–100. https://doi.org/10.1196/annals.1433.051.
Murphy, H.J., and M.J. Goven. 1966. The last decade in 38 years of potash studies for potato fertilizersin Maine. American Potato Journal 43: 122–127.
Muttucumaru, N., S.J. Powers, J.S. Elmore, D.S. Mottram, and N.G. Halford. 2013. Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry 61: 6734–6742. https://doi.org/10.1021/jf401570x.
Muttucumaru, N., S.J. Powers, J.S. Elmore, D.S. Mottram, and N.G. Halford. 2015. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. Journal of Agricultural and Food Chemistry 63: 2566–2575. https://doi.org/10.1021/jf506031w.
Muttucumaru, N., S.J. Powers, J.S. Elmore, A. Dodson, A. Briddon, D.S. Mottram, and N.G. Halford. 2017. Aryclamide-forming potential of potatoes grwn at different locaitons, and thenratio of free asparagine to reducing sugars at which free asparagine becomes a limiting facotr for acrylamide formation. Food Chemistry 220: 76–86.
Olsson, K., R. Svensson, and C.A. Roslund. 2004. Tuber components affecting acrylamide formation and colour in fried potato: variation by variety, year, storage temperature and storage time. Journal of the Science of Food and Agriculture 84: 447–458. https://doi.org/10.1002/jsfa.1681.
Pal Murugan, M., G. Agathian, A.D. Semwal, and G.K. Sharma. 2016. A review on acrylamide mitigation strategies in various processed foods. International Journal of Advanced Research 4: 1025–1040.
Pavek, M.J. and N.R. Knowles. 2016. WSU potato cultivar yield and postharvest quality evaluations for 2015. Washington State University Special Report, 114 pp. (http://potatoes.wsu.edu/wp-content/uploads/2016/01/Potato-Cultivar-Yield-and-Postharvest-Quality-Evaluations-Research-Edition-2015.pdf) accessed 13 December 2016.
Pedreschi, F. 2010. Acrylamide formation and reduction in fried potatoes. In Processing effects on safety and quality of foods chapter 9, ed. E. Ortegas-Rivas, 231–252. Boca Raton FL: CRC Press.
Pedreschi, F., K. Kaack, and K. Granby. 2006. Acrylamide content and color development in fried potato strips. Food Research International 39: 40–46. https://doi.org/10.1016/j.foodres.2005.06.001.
Pritchard, M.K., and L.R. Adam. 1992. Preconditioning and storage of chemically immature russet Burbank and Shepody potatoes. American Potato Journal 69: 805–815. https://doi.org/10.1007/BF02854188.
Roe, M.A., R.M. Faulks, and J.L. Belsten. 1990. Role of reducing sugars and amino acids in fry colour of chips from potatoes grown under different nitrogen regimes. Journal of the Science of Food and Agriculture 52: 207–214. https://doi.org/10.1002/jsfa.2740520207.
Seal, C.J., A. de Mul, G. Eisenbrand, A.J. Haverkort, K. Franke, S.P. Lalljie, H. Mykkänen, E. Reimerdes, G. Scholz, V. Somoza, S. Tuijtelaars, M. van Boekel, J. van Klaveren, S.J. Wilcockson, and L. Wilms. 2008. Risk-benefit considerations of mitigation measures on acrylamide content of foods--a case study on potatoes, cereals and coffee. The British Journal of Nutrition 99 (2): S1–S46. https://doi.org/10.1017/S0007114508965314.
Shock, C.C., Z.A. Holmes, T.D. Stieber, E.P. Eldredge, and P. Zhang. 1993. The effect of timed water stress on quality, total solids, and reducing sugar content of potatoes. American Potato Journal 70: 227–241.
Silva, E. M. and P. W. Simon. 2005. Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. in M. Friedman and D. Moltram eds. Chemistry and Safety of Acrylamide in Food. Advances in Experimental Medicine and Biology. 561:371–386. Springer US, New York.
Sowokinos, J.R. and D.A. Preston. 1988. Maintenance of potato processing quality by chemical maturity monitoring (CMM). Station Bulletin 586–1988 (Item No. AD-SB-3441) Minn. Agric. Expt. University of Minnesota.
Sowokinos, J.R., C.C. Shock, T.D. Stieber, and E.P. Eldredge. 2000. Compositional and enzymatic changes associated with the sugar-end defect in Russet Burbank potatoes. American Journal of Potato Research 77: 47–56. https://doi.org/10.1007/BF02853661.
Stanley, R., and S. Jewell. 1989. The influence of source and rate of potassium fertilizer on the quality of potatoes for french fry production. Potato Research 32: 439–446.
Sun, N., C.J. Rosen, and A.L. Thompson. 2018. Acrylamide formation in processed potates as affected by cultivar, nitroegn fertilization and storage time. Amercian Journal of Potato Research. https://doi.org/10.1007/s12230-018-9647-z.
Thompson, A.L., S.L. Love, J.R. Sowokinos, M.K. Thornton, and C.C. Shock. 2008. Review of the sugar end disorder in potato (Solanum tuberosum L.). American Journal of Potato Research 85: 375–386. https://doi.org/10.1007/s12230-008-9034-2.
Wang, Y., A.J. Bussan, and P.C. Bethke. 2012. Stem-end defect in chipping potatoes (Solanum tuberosum L.) as influenced by mild environmental stresses. American Journal of Potato Research 89: 392–399. https://doi.org/10.1007/s12230-012-9259-y.
Westermann, D.T., D.W. James, T.A. Tindall, and R.L. Hurst. 1994. Nitrogen and potassium fertilization of potatoes: Sugars and starch. American Potato Journal 71: 433–453. https://doi.org/10.1007/BF02849098.
Whittaker, A., I. Marotti, G. Dinelli, L. Calamai, S. Romagnoli, M. Manzelli, E. Palchetti, V. Vecchio, and S. Benedettelli. 2010. The influence of tuber mineral element composition as a function of geographical location on acrylamide formation in different Italian potato genotypes. Journal of the Science of Food and Agriculture 90: 1968–1976. https://doi.org/10.1002/jsfa.4026.
Woodell L., N. Olsen, T.L. Brandt and G.E. Kleinkopf. 2004. Vine-kill and long-term storage of Ranger Russet potatoes. CIS 1119. University of Idaho Extension, Moscow, ID.
Wohleb, C.H., N.R. Knowles, and M.J. Pavek. 2014. Plant growth and development. In D.A. Navarre and M.J. Pavek eds., The Potato: Botany, Production and Uses, 1st edition, Chapter 5 pp. 64–82. CABI Press.
Workman, M., and J. Twomey. 1970. The influence of storage on the physiology and productivity of Kennebec seed potatoes. American Potato Journal 47: 372–378.
World Health Organization. 2005. Acrylamide levels in food should be reduced because of public health concern says UN expert. http://www.who.int/mediacentre/news/notes/2005/np06/en/ accessed 12 December 2016.
Zommick, D.H., L.O. Knowles, M.J. Pavek, and N.R. Knowles. 2014. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). Planta 239: 1243–1263. https://doi.org/10.1007/s00425-014-2048-8.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rosen, C., Sun, N., Olsen, N. et al. Impact of Agronomic and Storage Practices on Acrylamide in Processed Potatoes. Am. J. Potato Res. 95, 319–327 (2018). https://doi.org/10.1007/s12230-018-9659-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12230-018-9659-8