Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Development and prospect of near-field optical measurements and characterizations

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Scanning near-field optical microscopy (SNOM) is an ideal experimental measuring system in nano-optical measurements and characterizations. Besides microscopy with resolution beyond the diffraction limit, spectroscope with nanometer resolution and other instruments with novel performances have been indispensable for researches in nano-optics and nanophotonics. This paper reviews the developing history of near-field optical (NFO) measuring method and foresees its prospects in future. The development of NFO measurements has gone through four stages, including optical imaging with super resolution, near-field spectroscopy, measurements of nanooptical parameters, and detections of near-field interactions. For every stage, research objectives, technological properties and application fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novotny L. The History of Near-field Optics. In: Wolf E, ed. Progress in Optics. Amsterdam: Elsevier, 2007, 137-184

    Google Scholar 

  2. Pohl D W, Denk W, Lanz M. Optical stethoscopy: image recording with resolutio l/20. Applied Physics Letters, 1984, 44(7): 651–653

    Article  Google Scholar 

  3. Hao F, Wang R, Wang J. A design methodology for directional beaming control by metal slit-grooves structure. Journal of Optics, 2011, 13(1): 015002

    Article  Google Scholar 

  4. Hess H F, Betzig E, Harris T D, Pfeiffer L N, West K W. Near-field spectroscopy of the quantum constituents of a luminescent system. Science, 1994, 264(5166): 1740–1745

    Article  Google Scholar 

  5. Novotny L, Stranick S J. Near-field optical microscopy and spectroscopy with pointed probes. Annual Review of Physical Chemistry, 2006, 57(1): 303–331

    Article  Google Scholar 

  6. Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131–136

    Article  Google Scholar 

  7. Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Metallized tip amplification of near-field Raman scattering. Optics Communications, 2000, 183(1–4): 333–336

    Article  Google Scholar 

  8. Hartschuh A, Sánchez E J, Xie X S, Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters, 2003, 90(9): 095503

    Article  Google Scholar 

  9. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101

    Article  Google Scholar 

  10. Wang X, Liu Z, Zhuang M D, Zhang H M, Wang X, Xie Z X, Wu D Y, Ren B, Tian Z Q. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Applied Physics Letters, 2007, 91(10): 101105

    Article  Google Scholar 

  11. Wang J J, Saito Y, Batchelder D N, Kirkham J, Robinson C, Smith D A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Applied Physics Letters, 2005, 86(26): 263111

    Article  Google Scholar 

  12. Höppener C, Novotny L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Letters, 2008, 8(2): 642–646

    Article  Google Scholar 

  13. Stanciu C, Sackrow M, Meixner A J. High NA particle- and tipenhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. Journal of Microscopy, 2008, 229(2): 247–253

    Article  MathSciNet  Google Scholar 

  14. Steidtner J, Pettinger B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Physical Review Letters, 2008, 100(23): 236101

    Article  Google Scholar 

  15. Hartschuh A, Qian H, Meixner A J, Anderson N, Novotny L. Nanoscale optical imaging of excitons in single-walled carbon nanotubes. Nano Letters, 2005, 5(11): 2310–2313

    Article  Google Scholar 

  16. Anderson N, Anger P, Hartschuh A, Novotny L. Subsurface Raman imaging with nanoscale resolution. Nano Letters, 2006, 6(4): 744–749

    Article  Google Scholar 

  17. Yano T A, Inouye Y, Kawata S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Letters, 2006, 6(6): 1269–1273

    Article  Google Scholar 

  18. Anderson N, Hartschuh A, Novotny L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Letters, 2007, 7(3): 577–582

    Article  Google Scholar 

  19. Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angewandte Chemie International Edition, 2008, 47(9): 1658–1661

    Article  Google Scholar 

  20. Budich C, Neugebauer U, Popp J, Deckert V. Cell wall investigations utilizing tip-enhanced Raman scattering. Journal of Microscopy, 2008, 229(3): 533–539

    Article  MathSciNet  Google Scholar 

  21. Wu X B, Wang J, Wang R, Xu J Y, Tian Q, Yu J Y. Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy. Guang Pu Xue yu Guang Pu Fen Xi, 2009, 29(10): 2681–2685 (in Chinese)

    Google Scholar 

  22. Diziain S, Adam P M, Bijeon J L, Lamy de la Chapelle M, Royer P. Development of an apertureless near-field optical microscope for fluorescence imaging and spectroscopy. Synthetic Metals, 2003, 139(3): 557–560

    Article  Google Scholar 

  23. Vobornik D, Banks D S, Lu Z, Fradin C, Taylor R, Johnston L J. Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Applied Physics Letters, 2008, 93(16): 163904

    Article  Google Scholar 

  24. Nabetani Y, Yamasaki M, Miura A, Tamai N. Fluorescence dynamics and morphology of electroluminescent polymer in small domains by time-resolved SNOM. Thin Solid Films, 2001, 393(1–2): 329–333

    Article  Google Scholar 

  25. Yatsui T, Kawazoe T, Shimizu T, Yamamoto Y, Ueda M, Kourogi M, Ohtsu M, Lee G H. Observation of size-dependent features in the photoluminescence of zinc oxide nanocrystallites by near-field ultraviolet spectroscopy. Applied Physics Letters, 2002, 80(8): 1444–1446

    Article  Google Scholar 

  26. Stiegler J M, Abate Y, Cvitkovic A, Romanyuk Y E, Huber A J, Leone S R, Hillenbrand R. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy. ACS Nano, 2011, 5(8): 6494–6499

    Article  Google Scholar 

  27. Yeo B S, Madler S, Schmid T, Zhang W, Zenobi R. Tip-enhanced Raman spectroscopy can see more: the case of cytochrome C. Journal of Physical Chemistry C, 2008, 112(13): 4867–4873

    Article  Google Scholar 

  28. Zhang D, Heinemeyer U, Stanciu C, Sackrow M, Braun K, Hennemann L E, Wang X, Scholz R, Schreiber F, Meixner A J. Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling. Physical Review Letters, 2010, 104(5): 056601

    Article  Google Scholar 

  29. Fang Z, Peng Q, Song W, Hao F, Wang J, Nordlander P, Zhu X. Plasmonic focusing in symmetry broken nanocorrals. Nano Letters, 2011, 11(2): 893–897

    Article  Google Scholar 

  30. Hao F, Wang R, Wang J. A design method for a micron-focusing plasmonic lens based on phase modulation. Plasmonics, 2010, 5(4): 405–409

    Article  MathSciNet  Google Scholar 

  31. Hao F, Wang R, Wang J. A novel design method of focusing-control device by modulating SPPs scattering. Plasmonics, 2010, 5(1): 45–49

    Article  Google Scholar 

  32. Hao F, Wang R, Wang J. Design and characterization of a micronfocusing plasmonic device. Optics Express, 2010, 18(15): 15741–15746

    Article  Google Scholar 

  33. Hao F, Wang R, Wang J. Focusing control based on SPPs-scattering modulation. Journal of Nonlinear Optical Physics & Materials, 2010, 19(4): 535–541

    Article  MathSciNet  Google Scholar 

  34. Nesci A. Measuring Amplitude and Phase in Optical Fields with Sub-Wavelength Features. Neuchatel: University of Neuchatel, 2001

    Google Scholar 

  35. Schnell M, García-Etxarri A, Huber A J, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3(5): 287–291

    Article  Google Scholar 

  36. Schnell M, Garcia-Etxarri A, Huber A J, Crozier K B, Borisov A, Aizpurua J, Hillenbrand R. Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy. Journal of Physical Chemistry C, 2010, 114(16): 7341–7345

    Article  Google Scholar 

  37. Blaize S, Bérenguier B, Stéfanon I, Bruyant A, Lérondel G, Royer P, Hugon O, Jacquin O, Lacot E. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry. Optics Express, 2008, 16(16): 11718–11726

    Article  Google Scholar 

  38. Schnell M, Garcia-Etxarri A, Alkorta J, Aizpurua J, Hillenbrand R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Letters, 2010, 10(9): 3524–3528

    Article  Google Scholar 

  39. Gersen H, Novotny L, Kuipers L, van Hulst N F. On the concept of imaging nanoscale vector fields. Nature Photonics, 2007, 1(5): 242

    Article  Google Scholar 

  40. Lee K G, Kihm HW, Kihm J E, Choi WJ, Kim H, Ropers C, Park D J, Yoon Y C, Choi S B, Woo D H, Kim J, Lee B, Park Q H, Lienau C, Kim D S. Vector field microscopic imaging of light. Nature Photonics, 2007, 1(1): 53–56

    Article  Google Scholar 

  41. Lee K G, Kihm HW, Ahn K J, Ahn J S, Suh Y D, Lienau C, Kim D S. Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape. Optics Express, 2007, 15(23): 14993–15001

    Article  Google Scholar 

  42. Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L. Probing the magnetic field of light at optical frequencies. Science, 2009, 326(5952): 550–553

    Article  Google Scholar 

  43. Fischer U C, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy. Physical Review Letters, 1989, 62(4): 458–461

    Article  Google Scholar 

  44. Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648

    Article  Google Scholar 

  45. Robert D G, Robert J S, Daniel E P. Optical antenna: towards a unity efficiency near-field optical probe. Applied Physics Letters, 1997, 70(11): 1354–1356

    Article  Google Scholar 

  46. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009, 3(11): 654–657

    Article  Google Scholar 

  47. Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. l/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters, 2007, 7(1): 28–33

    Article  Google Scholar 

  48. Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Physical Review Letters, 2006, 96(11): 113002

    Article  Google Scholar 

  49. Novotny L. From near-field optics to optical antennas. Physics Today, 2011, 64(7): 47–52

    Article  MathSciNet  Google Scholar 

  50. Mühlschlegel P, Eisler H J, Martin O J, Hecht B, Pohl D W. Resonant optical antennas. Science, 2005, 308(5728): 1607–1609

    Article  Google Scholar 

  51. Biagioni P, Huang J S, Duò L, Finazzi M, Hecht B. Cross resonant optical antenna. Physical Review Letters, 2009, 102(25): 256801

    Article  Google Scholar 

  52. Olmon R L, Krenz P M, Jones A C, Boreman G D, Raschke M B. Near-field imaging of optical antenna modes in the mid-infrared. Optics Express, 2008, 16(25): 20295–20305

    Article  Google Scholar 

  53. Bouhelier A, Beversluis M R, Novotny L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters, 2003, 83(24): 5041–5043

    Article  Google Scholar 

  54. Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483

    Article  Google Scholar 

  55. Zentgraf T, Dorfmüller J, Rockstuhl C, Etrich C, Vogelgesang R, Kern K, Pertsch T, Lederer F, Giessen H. Amplitude- and phaseresolved optical near fields of split-ring-resonator-based metamaterials. Optics Letters, 2008, 33(8): 848–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, Q. & Zhang, M. Development and prospect of near-field optical measurements and characterizations. Front. Optoelectron. 5, 171–181 (2012). https://doi.org/10.1007/s12200-012-0257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0257-y

Keywords

Navigation