Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A deterministic SAIR model with vaccination and treatment: dynamical behaviors and control strategies

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In order to provide valuable information for the timely design and determination of public health measures during epidemic outbreaks, a deterministic SAIR model with vaccination programs and saturated treatment is established in this paper, as they have been demonstrated to be effective ways to change the evolution and prevent the spread of infectious diseases. The dynamical behaviors of the proposed model is analyzed theoretically and numerically. It is found that multiple endemic equilibria occur under certain conditions, suggesting that decreasing the basic reproduction number \(\mathcal {R}_0\) is insufficient for disease eradication and improving the efficiency of vaccination and treatment can have a significant impact on disease progression. Furthermore, sensitivity analysis is conducted to quantify how changes in concerned parameters impact \(\mathcal {R}_0\), and the proposed model is applied to the pandemic wave of COVID-19. Finally, optimal control problem with time-varying vaccination and treatment is studied and cost-effectiveness analysis is examined under different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the data used to support the findings of this study are included in our manuscript and can be accessed freely from the references.

References

  1. Liu, X., Takeuchi, Y., Iwami, S.: SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lee, S., Golinski, M., Chowell, G.: Modeling optimal age-specific vaccination strategies against pandemic influenza. Bull. Math. Biol. 74, 958–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Laarabi, H., Rachik, M., Kahlaoui, O.E., Labriji, E.H.: Optimal vaccination strategies of an SIR epidemic model with a saturated treatment. Univ. J. Appl. Math. 1, 185–191 (2013)

    Article  MATH  Google Scholar 

  4. Azizi, A., Kazanci, C., Komarova, N.L., Wodarz, D.: Effect of human behavior on the evolution of viral strains during an epidemic. Bull. Math. Biol. 84, 144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bulai, I.M., Montefusco, F., Pedersen, M.G.: Stability analysis of a model of epidemic dynamics with nonlinear feedback producing recurrent infection waves. Appl. Math. Lett. 136, 108455 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yerlanov, M., Agarwal, P., Colijn, C., Stockdale, J.E.: Effective population size in simple infectious disease models. J. Math. Biol. 87, 80 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M., Ares, S., Cuesta, J.A., Manrubia, S.: The turning point and end of an expanding epidemic cannot be precisely forecast. Proc. Natl. Acad. Sci. USA 117, 26190–26196 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tang, S., Li, C., Tang, B., Wang, X.: Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map. Commun. Nonlinear Sci. Numer. Simul. 79, 104900 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bai, Z., Lou, Y., Zhao, X.: A delayed succession model with diffusion for the impact of diapause on population growth. SIAM J. Appl. Math. 80, 1493–1519 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Najm, F., Yafia, R., Aziz-Alaoui, M.A., Tridane, A., et al.: Mathematical analysis of an epidemic model with direct and indirect transmission modes and two delays. Nonauton. Dyn. Syst. 10, 20230103 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, X., Wu, H., Tang, S.: Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 control using SEIR modeling approach. Bull. Math. Biol. 84, 108 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kermack, W.O., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. 115, 700–721 (1927)

    MATH  Google Scholar 

  13. Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., et al.: Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet 395, 871–877 (2020)

    Article  Google Scholar 

  14. Aziz-Alaoui, M.A., Najm, F., Yafia, R.: SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity. Math. Model. Nat. Phenom. 16, 31 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saha, P., Biswas, S.K., Biswas, M.H.A., Ghosh, U.: An SEQAIHR model to study COVID-19 transmission and optimal control strategies in Hong Kong, 2022. Nonlinear Dyn. 111, 6873–6893 (2023)

    Article  MATH  Google Scholar 

  16. Ruhomally, Y.B., Mungur, M., Khoodaruth, A.A.H., Oree, V., et al.: Assessing the impact of contact tracing, quarantine and red zone on the dynamical evolution of the Covid-19 pandemic using the cellular automata approach and the resulting mean field system: a case study in Mauritius. Appl. Math. Model. 111, 567–589 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Calabrese, J.M., Demers, J.: How optimal allocation of limited testing capacity changes epidemic dynamics. J. Theor. Biol. 538, 111017 (2022)

    Article  MATH  Google Scholar 

  18. Sun, C., Yang, W., Arino, J., Khan, K.: Effect of media-induced social distancing on disease transmission in a two patch setting. Math. Biosci. 230, 87–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Buonomo, B., Giacobbe, A.: tOscillations in SIR behavioural epidemic models: the interplay between behaviour and overexposure to infection. Chaos Solitons Fractals 174, 113782 (2023)

    Article  MATH  Google Scholar 

  20. Balelli, I., Pasin, C., Prague, M., Crauste, F., et al.: A model for establishment, maintenance and reactivation of the immune response after vaccination against Ebola virus. J. Theor. Biol. 495, 110254 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penn, M.J., Donnelly, C.A.: Asymptotic analysis of optimal vaccination policies. Bull. Math. Biol. 85, 15 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291, 775–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201, 58–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar, A., Srivastava, P.K., Gupta, R.P.: Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment. Math. Comput. Simul. 157, 77–99 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Das, T., Srivastava, P.K., Kumar, A.: Nonlinear dynamical behavior of an SEIR mathematical model: effect of information and saturated treatment. Chaos 31, 043104 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J., Qiao, Y.: Bifurcation analysis of an SIR model considering hospital resources and vaccination. Math. Comput. Simul. 208, 157–185 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar, A., Gupta, A., Dubey, U.S., Dubey, B.: Stability and bifurcation analysis of an infectious disease model with different optimal control strategies. Math. Comput. Simul. 213, 78–114 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dreessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Castillo-Chavez, C., Feng, Z., Huang, W.: On the Computation of \({R}_0\) and Its Role on Global Stability. Springer, New York (2002)

    MATH  Google Scholar 

  30. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27, 1070–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Freedman, H.L., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6, 583–600 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robert, H., Martin, J.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45, 432–454 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Blower, M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62, 229–243 (1994)

    Article  MATH  Google Scholar 

  36. Sanya Municipal Health Commission. https://ws.sanya.gov.cn/wjwsite/xxgzbdfyyq/list.shtml

  37. Sanya Municipal Bureau of Statistics. https://tjj.sanya.gov.cn//tjjsite/hygq/202303/bc76dd4ba9d94fedba11252e887bc0fa.shtml

  38. Sina English-China Real-time Report. https://finance.sina.com.cn/jjxw/2022-12-17/doc-imxwymvr9961534.shtml

  39. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman & Hall/CRC, London (2007)

    Book  MATH  Google Scholar 

  40. Berhe, H.W.: Optimal control strategies and cost-effectiveness analysis applied to real data of cholera outbreak in Ethiopia’s oromia region. Chaos Solitons Fractals 138, 109933 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (#62376212) and Scientific Research Program Project of Education Department of Shaanxi Province, China (#23JP114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Y., Zhang, S. & Xu, J. A deterministic SAIR model with vaccination and treatment: dynamical behaviors and control strategies. J. Appl. Math. Comput. 71, 573–604 (2025). https://doi.org/10.1007/s12190-024-02238-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02238-6

Keywords

Navigation