Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Higher-order predictor–corrector methods for fractional Benjamin–Bona–Mahony–Burgers’ equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct a higher order predictor–corrector technique for time fractional Benjamin–Bona–Mahony–Burgers’ equations. Instead of directly using an explicit scheme as the predictor in traditional predictor–corrector methods, we employ a new predictor scheme based on the author’s previous work ([24] https://doi.org/10.1007/s10910-024-01589-6), in which the given nonlinear equation is linearized by several linearization techniques and solved by Adams–Moulton scheme for the temporal direction and fourth order finite difference scheme for the spatial direction. Once the predictor solution is obtained, the higher order Adams–Moulton method is used as the corrector. Moreover, to make much higher order technique, a multiple correction technique is introduced by repeatedly correcting the results induced from the predictor. Numerical results demonstrate the efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bu, S.: A collocation methods based on the quadratic quadrature technique for fractional differential equation. AIMS Math. 7(1), 804–820 (2022). https://doi.org/10.3934/math.2022048

    Article  MathSciNet  MATH  Google Scholar 

  2. Bu, S., Jeon, Y.: Higher order predictor–corrector methods with an enhanced predictor for fractional differential equations. Math. Comput. Simulat. (to be appeared) (2023)

  3. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002). https://doi.org/10.1023/A:1016592219341

    Article  MathSciNet  MATH  Google Scholar 

  4. Ford, N., Morgado, M., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Frac. Calc. Appl. Anal. 16(4), 874–891 (2013). https://doi.org/10.2478/s13540-013-0054-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76, 583–609 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jeon, Y., Bu, S.: Improved numerical approach for Bagley–Torvik equation using fractional integral formula and Adams-Moulton method. J. Comput. Nonlinear Dyn. 19(5), 051005 (2024). https://doi.org/10.1115/1.4065012

    Article  MATH  Google Scholar 

  7. Li, W., Alikhanov, A., Efendiev, Y., Leung, W.T.: Partially explicit time discretization for nonlinear time fractional diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 113, 106440 (2022). https://doi.org/10.1016/j.cnsns.2022.106440

    Article  MathSciNet  MATH  Google Scholar 

  8. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  9. Zhong, Y., Bao, X.B., Liu, L.B., Liang, Z.F.: Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid. AIMS Math. 6(8), 8611–8624 (2021). https://doi.org/10.3934/math.2021500

    Article  MathSciNet  MATH  Google Scholar 

  10. Chi, X., Zhang, H.: Numerical study for the unsteady space fractional magnetohydrodynamic free convective flow and heat transfer with Hall effects. Appl. Math. Lett. 120, 107312 (2021). https://doi.org/10.1016/j.aml.2021.107312

    Article  MathSciNet  MATH  Google Scholar 

  11. Djordjevica, V.D., Atanackovic, T.M.: Similarity solutions to the nonlinear heat conduction and Burgers/Korteweg de Vries fractional equations. J. Comput. Appl. Math. 222(2), 701–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Javaid, M., Tahir, M., Imran, M., Baleanu, D., Akgül, A., Imran, M.A.: Unsteady flow of fractional Burgers’ fluid in a rotating annulus region with power law kernel. Alex. Eng. J. 6, 17–27 (2022)

    Article  MATH  Google Scholar 

  13. Raza, N.: Unsteady rotational flow of a second grade fluid with non-integer Caputo time fractional derivative. Punjab Univ. J. Math. 49, 15–25 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Arora, S., Jain, R., Kukreja, V.K.: Solution of Benjamin–Bona–Mahony–Burgers equation using collocation method with quintic Hermite splines. Appli. Numer. Math. 154, 1–16 (2020). https://doi.org/10.1016/j.apnum.2020.03.015

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, C., Fang, S.: Optimal decay rates of solutions for a multi-dimensional generalized Benjamin–Bona–Mahony equation. Nonlinear Anal. 75(7), 3385–3392 (2012). https://doi.org/10.1016/j.na.2011.12.035

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, X., Xu, W.: Travelling wave solutions for a class of the generalized Benjamin–Bona–Mahoney equations. Appl. Math. Comput. 192(2), 507–519 (2007). https://doi.org/10.1016/j.amc.2007.03.024

    Article  MathSciNet  MATH  Google Scholar 

  17. Ankur, Jiwari, R.: New multiple analytic solitonary solutions and simulation of (2+1)-dimensional generalized Benjamin-Bona-Mahony-Burgers model. Nonlinear Dyn. 111, 13297–13325 (2023). https://doi.org/10.1007/s11071-023-08528-1

    Article  MATH  Google Scholar 

  18. Oruc, G., Borluk, H., Muslu, G.M.: The generalized fractional Benjamin–Bona–Mahony equation: analytical and numerical results. Physica D 409, 132499 (2020). https://doi.org/10.1016/j.physd.2020.132499

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019). https://doi.org/10.1007/s10915-019-00991-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Ray, S.S., Das, G.: Numerical simulation of time fractional Benjamin–Bona–Mahony–Burger equation describing propagation of long waves on the water surface. J. Ocean Eng. Sci. (2023). https://doi.org/10.1016/j.joes.2023.05.002

    Article  MATH  Google Scholar 

  21. Majeed, A., Kamran, M., Abbas, M., Misro, M.Y.B.: An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin–Bona–Mahony–Burger model. Phys. Scr. 96(8), 084002 (2021). https://doi.org/10.1088/1402-4896/abfde2

    Article  MATH  Google Scholar 

  22. Wang, Y.M.: A high-order linearized and compact difference method for the time-fractional Benjamin-Bona-Mahony equation. Appl. Math. Lett. 105, 106339 (2020). https://doi.org/10.1016/j.aml.2020.106339

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, Y., Li, C., Stynes, M.: A fast second-order predictor–corrector method for a nonlinear time-fractional Benjamin–Bona–Mahony–Burgers equation. Numer. Algorithms 95, 693–720 (2023). https://doi.org/10.1007/s11075-023-01586-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeon, Y., Bu, S.: Numerical approach for time-fractional Burgers’ equation via a combination of Adams–Moulton and linearized technique. J. Math. Chem. 62, 1189–1208 (2024). https://doi.org/10.1007/s10910-024-01589-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, B., He, D., Pan, K.: A linearized high-order combined compact difference scheme for multi-dimensional coupled Burgers’ equations. Numer. Math. Theory Met. Appl. 11, 299–320 (2018). https://doi.org/10.4208/nmtma.OA-2017-0090

    Article  MathSciNet  MATH  Google Scholar 

  26. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen 52, 57–71 (1998)

    MATH  Google Scholar 

  27. Yan, Y., Pal, K., Ford, N.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014). https://doi.org/10.1007/s10543-013-0443-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiwari, R., Mittal, R., Sharma, K.: A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation. Appl. Math. Comput. 219, 6680–6691 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Rubin, S., Graves, R., Jr.: Viscous flow solutions with a cubic spline approximation. Comput. Fluids 3(1), 1–36 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

    Article  MathSciNet  MATH  Google Scholar 

  31. Bak, S., Jeon, Y., Park, S.: A novel decomposition as a fast finite difference method for second derivatives. Results Math. 78, 22 (2023). https://doi.org/10.1007/s00025-022-01798-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (2008)

    MATH  Google Scholar 

  33. Atkinson, K.E.: An Introduction to Numerical Analysis. John Wiley, New Jersey (1991)

    MATH  Google Scholar 

  34. Lin, J., Shi, L., Reutskiy, S., Lu, J.: Numerical treatment of multi-dimensional time-fractional Benjamin–Bona–Mahony–Burgers equations in arbitrary domains with a novel improvised RBF-based method. Compt. Math. Appl. 167, 178–198 (2024). https://doi.org/10.1016/j.camwa.2024.05.018

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author Bu and the corresponding author Jeon were supported by basic science research program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (grant number NRF-2022R1A2C1004588) and (Grant Number RS-2023-00237912), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghyeon Jeon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, S., Jeon, Y. Higher-order predictor–corrector methods for fractional Benjamin–Bona–Mahony–Burgers’ equations. J. Appl. Math. Comput. 71, 1–30 (2025). https://doi.org/10.1007/s12190-024-02223-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02223-z

Keywords

Navigation