Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A conjugate gradient projection method with restart procedure for solving constraint equations and image restorations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The conjugate gradient projection method is one of the most effective methods for solving large-scale nonlinear monotone convex constrained equations. In this paper, a new search direction with restart procedure is proposed, and a self-adjusting line search criterion is improved, then a three-term conjugate gradient projection method is designed to solve the large-scale nonlinear monotone convex constrained equations and image restorations. Without using the Lipschitz continuity of these equations, the presented method is proved to be globally convergent. Moreover, its R-linear convergence rate is attained under Lipschitz continuity and the usual assumptions. Finally, large-scale numerical experiments for the convex constraint equations and image restorations have been performed, which show that the new method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mapping associated with variational inequality and is applications. SIAM J. Optim. 11(4), 962–973 (2001)

    Article  MathSciNet  Google Scholar 

  2. Dirkse, S.P., Ferris, M.C.: MCPLIB: A collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5(4), 319–345 (2012)

    Article  Google Scholar 

  3. Yang, L.F., Luo, J.Y., Xu, Y., Zhang, Z.R., Dong, Z.Y.: A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading. IEEE Trans. Ind. Inform. 16(3), 1858–1872 (2020)

    Article  Google Scholar 

  4. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(\ell _1\)-norm problems with applications to compressed sensing. Nonlinear Anal. 74(11), 3570–3577 (2011)

    Article  MathSciNet  Google Scholar 

  5. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley, New York (1996)

    Google Scholar 

  6. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equation in Several Variables. Acadamic Press, New York (1970)

    Google Scholar 

  7. Hestenes, M.R., Stiefel, E.: Method of conjugate gradient for solving linear equations. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    Article  Google Scholar 

  8. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Computer J. 7(2), 149–154 (1964)

    Article  MathSciNet  Google Scholar 

  9. Dai, Y.H.: Nonlinear conjugate gradient methods. Wiley Encyclopedia of Operations Research and Management Science. (2010)

  10. Polak, E., Ribière, G.: Note sur la convergence de directions conjugées. Rev. Fr. Inform. Rech. Oper. 16(3), 35-43 (1969) (in French)

  11. Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)

    Article  Google Scholar 

  12. Fletcher, R.: Unconstrained Optimization. Practical Methods of Optimization, vol. 1. Wiley, New York. (1987)

  13. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory and Appl. 69(1), 129–137 (1991)

    Article  MathSciNet  Google Scholar 

  14. Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)

    Article  MathSciNet  Google Scholar 

  15. Sun, D.F., Woinersley, R.S., Qi, H.D.: A feasible semismooth asymptotically Newton method for mixed complementarity problems. Math. Program. 94(1), 167–187 (2002)

    Article  MathSciNet  Google Scholar 

  16. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66(1), 33–46 (2007)

    Article  MathSciNet  Google Scholar 

  17. Qi, L.Q., Tong, X.J., Li, D.H.: Active-set projected trust-region algorithm for box-constrained nonsmooth equations. J. Optim. Theory Appl. 120(3), 601–625 (2004)

    Article  MathSciNet  Google Scholar 

  18. Yu, Z.S., Lin, J., Sun, J., Xiao, Y.H., Liu, L.Y., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196(2), 478–484 (2006)

    Article  MathSciNet  Google Scholar 

  20. Yin, J.H., Jian, J.B., Jiang, X.Z., Liu, M.X., Wang, L.Z.: A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer. Algorithms. 88(1), 389–418 (2021)

    Article  MathSciNet  Google Scholar 

  21. Sabi’u, J., Shah, A., Waziri, M.Y.: Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl. Numer. Math. 153, 217–233 (2020)

    Article  MathSciNet  Google Scholar 

  22. Sabi’u, J., Shah, A.: An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations. RAIRO-Oper. Res. 55, S1113–S1127 (2021)

    Article  MathSciNet  Google Scholar 

  23. Sabi’u, J., Shah, A., Waziri, M.Y.: A modified Hager-Zhang conjugate gradient method with optimal choices for solving monotone nonlinear equations. Int. J. Comput. Math. 99(2), 332–354 (2022)

    Article  MathSciNet  Google Scholar 

  24. ur Rehman, M., Sabi’u, J., Sohaib, M., et al.: A projection-based derivative free DFP approach for solving system of nonlinear convex constrained monotone equations with image restoration applications. J. Appl. Math. Comput. 69(5), 3645-3673 (2023)

  25. Ahmed, K., Waziri, M.Y., Halilu. A.S., et al.: Another Hager-Zhang-type method via singular-value study for constrained monotone equations with application. Numer. Algorithms. 1-41 (2023)

  26. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Math. Program. 12(2), 241–254 (1977)

    Article  MathSciNet  Google Scholar 

  27. Beale, E.M.: A Derivation of Conjugate Gradients. Academic Press, London (1972)

    Google Scholar 

  28. Kou, C.X., Dai, Y.H.: A modified self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization. J. Optim. Theory Appl. 165(1), 209–224 (2015)

    Article  MathSciNet  Google Scholar 

  29. Narushima, Y., Yabe, H., Ford, J.A.: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization SIAM. J. Optim. 21(1), 212–230 (2011)

    MathSciNet  Google Scholar 

  30. Jiang, X.Z., Liao, W., Yin, J.H., Jian, J.B.: A new family of hybrid three-term conjugate gradient methods with applications in image restoration. Numer. Algorithms. 91, 161–191 (2022)

    Article  MathSciNet  Google Scholar 

  31. Jiang, X.Z., Yang, H.H., Jian, J.B., Wu, X.D.: Two families of hybrid conjugate gradient methods with restart procedures and their applications. Optim. Method. Soft. 38(5), 947–974 (2023)

    Article  MathSciNet  Google Scholar 

  32. Jiang, X.Z., Ye, X.M., Huang, Z.F., Liu, M.X.: A family of hybrid conjugate gradient method with restart procedure for unconstrained optimizations and image restorations. Comput. Oper. Res. 159, 106341 (2023)

    Article  MathSciNet  Google Scholar 

  33. Jiang, X.Z., Zhu, Y.H., Jian, J.B.: Two efficient nonlinear conjugate gradient methods with restart procedures and their applications in image restoration. Nonlinear Dyn. 111(6), 5469–5498 (2023)

    Article  Google Scholar 

  34. Jian, J.B., Han, L., Jiang, X.Z.: A hybrid conjugate gradient method with descent property for unconstrained optimization. Appl. Math. Model. 39(3–4), 1281–1290 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sun, M., Liu, J.: New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo. 53(3), 399–411 (2016)

    Article  MathSciNet  Google Scholar 

  36. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)

    Article  MathSciNet  Google Scholar 

  37. Amini, K., Kamandi, A.: A new line search strategy for finding separating hyperplane in projection-based methods. Numer. Algorithms. 70(3), 559–570 (2015)

    Article  MathSciNet  Google Scholar 

  38. Liu, P.J., Jian, J.B., Jiang, X.Z.: A new conjugate gradient projection method for convex constrained nonlinear equations. Complexity. 2020 (2020)

  39. Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory. Academic Press, New York (1971)

    Google Scholar 

  40. Gao, P.T., He, C.J., Liu, Y.: An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl. Math. Comput. 359, 1–16 (2019)

    MathSciNet  Google Scholar 

  41. Mor\(\acute{e}\), J.J., Garbow, B.S., Hillstrom, K.E: Testing unconstrained optimization software, ACM Trans. Math. Softw. 7(1) 17-41 (1981)

  42. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  43. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  44. Xiao, Y.H., Wang, Q.Y., Hu, Q.J.: Non-smooth equations based method for \(\ell _1\)-norm problems with applications to compressed sensing. Nonlinear Anal. 74(11), 3570–3577 (2011)

    Article  MathSciNet  Google Scholar 

  45. Pang, J.S.: Inexact Newton methods for the nonlinear complementarity problem. Math. Program. 36(1), 54–71 (1986)

    Article  MathSciNet  Google Scholar 

  46. Xiao, Y.H., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405(1), 310–319 (2013)

    Article  MathSciNet  Google Scholar 

  47. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhen Jiang.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the National Natural Science Foundation of China (Grant Nos.12361063, 12171106), Guangxi Science and Technology Program (Grant No. AD23023001), the Natural Science Foundation of Guangxi Province (Grant No.2016GXNSFAA380028), and the Research Project of Guangxi Minzu University (Grant No. 2018KJQD02).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Huang, Z. & Yang, H. A conjugate gradient projection method with restart procedure for solving constraint equations and image restorations. J. Appl. Math. Comput. 70, 2255–2284 (2024). https://doi.org/10.1007/s12190-024-02044-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-024-02044-0

Keywords

Navigation