Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

q-Fibonacci sequence spaces and related matrix transformations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we define the sequence spaces \(\ell _{p}(\widehat{F}_{q})\) \(\left( 1\le p< \infty \right) \), \(\ell _{\infty }(\widehat{F}_{q})\), \(c_{0}(\widehat{F}_{q})\) and \(c(\widehat{F}_{q})\) by using q-Fibonacci band matrix \(\widehat{F}_{q}\) defined by

$$\begin{aligned} \widehat{F}_{q}=\widehat{F}_{nk}(q)=\left\{ \begin{array}{lll} -\dfrac{F_{n+1}(q)-1}{q^{n}F_{n}(q)} &{}, k=n-1\\ \dfrac{F_{n+2}(q)-1}{q^{n}F_{n}(q)} &{}, k=n\\ 0 &{}, \text {otherwise} \end{array} \right. \quad (k,n \in \mathbb {N}). \end{aligned}$$

We study some topological properties and give some inclusion relations for these spaces. In addition, we build a bases for the space \(\ell _{p}(\widehat{F}_{q})\), compute \(\alpha \)-, \(\beta \)-, \(\gamma \)- duals of the same space, characterize some matrix classes and examine some geometric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aktuğlu, H., Bekar, Ş: On \(q\)-Cesàro matrix and \(q\)-statistical convergence. J. Comput. Appl. Math. 235(16), 4717–4723 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E.: Fibonacci numbers and the Rogers-ramanujan identities. Fibonacci Quart. 42(1), 3–19 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Aytaç, P.: Some arithmetic properties of \(q\)-Fibonacci numbers. Master thesis, Akdeniz University (2018)

  4. Başar, F., Dutta, H.: Summable spaces and their duals, matrix transformations and geometric properties. CRC Press, US (2020)

    Book  MATH  Google Scholar 

  5. Bekar, Ş.: \(q-\) Matrix summability methods PhD Thesis, Eastern Mediterranean University (EMU) (2011)

  6. Carlitz, L.: Fibonacci notes 3: \(q-\)Fibonacci numbers, (1974)

  7. Çınar, M., Et, M.: \(q-\)Double cesaro matrices and \(q-\)statistical convergence of double sequences. Natl. Acade. Sci. Lett. 43(1), 73–76 (2020)

    Article  MathSciNet  Google Scholar 

  8. Demiriz, S., Şahin, A.: \(q\)-Cesàro sequence spaces derived by \(q\)-analogues. Adv. Math. 5(2), 97–110 (2016)

    MATH  Google Scholar 

  9. Diestel, J.: Sequences and series in Banach spaces. Springer Science and Business Media, NY (2012)

    Google Scholar 

  10. Et, M., Çolak, R.: On some generalized difference sequence spaces. Soochow J. Math. 21(4), 377–386 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Et, M., Esi, A.: On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malaysian Math. Sci. Soc. 23, 25–32 (2000)

    MathSciNet  MATH  Google Scholar 

  12. García-Falset, J.: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20(3), 495–506 (1994)

    MathSciNet  MATH  Google Scholar 

  13. García-Falset, J.: The fixed point property in Banach spaces with the NUS-property. J. Math. Anal. Appl. 215(2), 532–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gökçe, F., Sarıgöl, M.A.: Series spaces derived from absolute Fibonacci summability and matrix transformations. Boll. Dell’Union. Matemat. Ital 13(1), 29–38 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gökçe, F., Sarıgöl, M.A.: Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujev. J. Math. 44(2), 273–286 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hudzik, H., Karakaya, V., Mursaleen, M., Şimsek, N.: Banach-saks type and gurariǐ modulus of convexity of some banach sequence spaces. In Abstract and Applied Analysis, Hindawi (2014)

    Book  MATH  Google Scholar 

  17. Hirschhorn, M.D.: Partitions and ramanujan’s continued fraction. Duke Math. J. 39(4), 789–791 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mursaleen, M., Başar, F., Altay, B.: On the Euler sequence spaces which include the spaces \(\ell _{p}\) and \(\ell _{\infty }\). Nonlinear Anal. Theory Method. Appl. 65(3), 707–717 (2006)

    Article  MATH  Google Scholar 

  19. Mursaleen, M., Tabassum, S., Fatma, R.: On \(q-\)Statistical summability method and its properties. Iran. J. Sci. Technol. Transact. A Sci. 46(2), 455–460 (2022)

    Article  MathSciNet  Google Scholar 

  20. Kac, V., Cheung, P.: Quantum calculus. Springer, New York (2002)

    Book  MATH  Google Scholar 

  21. Kananthai, A., Musarleen, M., Sanhan, W., Suantai, S.: On property \((H)\) and rotundity of difference sequence spaces. J. Nonlinear Convex Anal. 3(3), 401–410 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Kara, E.E.: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013(1), 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kara, E.E., İlkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra 64(11), 2208–2223 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kara, M.İ, Kara, E.E.: Matrix transformations and compact operators on Catalan sequence spaces. J. Math. Anal. Appl. 498(1), 124925 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, V.A., Tuba, U.: On paranormed Ideal convergent sequence spaces defined by Jordan totient function. J. Inequal. Appl. 2021(1), 1–16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kirişçi, M., Başar, F.: Some new sequence spaces derived by the domain of generalized difference matrix. Comput. Math. Appl. 60(5), 1299–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knaust, H.: Orlicz sequence spaces of banach-saks type. Arch. Math. 59(6), 562–565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koshy, T.: Fibonacci and lucas numbers with applications. John Wiley and Sons, New York (2001)

    Book  MATH  Google Scholar 

  29. Savaş, E., Karakaya, V., Şimşek, N.: Some \(\ell (p)-\) Type new sequence spaces and their geometric properties, Abstr. Appl. Anal., 2009, Article ID 696971 (2009)

  30. Schur, I.: Ein beitrag zur additiven zahlentheorie, sitzungsber., akad. wissensch. berlin, phys,. Math. Klasse 302, 321 (1917)

    Google Scholar 

  31. Selmanogullari, T., Savaş, E., Rhoades, B.E.: On \(q\)-Hausdorff matrices. Taiwan. J. Math. 15(6), 2429–2437 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stieglitz, M., Tietz, H.: Matrixtransformationen von folgenrä umen eine Ergebnisübersicht. Math. Z. 154, 1–16 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yaying, T., Hazarika, B., Mursaleen, M.: On sequence space derived by the domain of \(q\)-Cesàro matrix in \(\ell _p\) space and the associated operator ideal. J. Math. Anal. Appl. 493(1), 1–17 (2021)

    Article  MATH  Google Scholar 

  34. Yaying, T., Hazarika, B., Mursaleen, M.: On generalized \((p,q)\)-Euler matrix and associated sequence spaces, J. Funct. Sp, (2021)

  35. Yaying, T., Hazarika, B., Chandra Tripathy, B., Mursaleen, M.: The spectrum of second order quantum difference operator. Symmetry 14(3), 557 (2022)

    Article  Google Scholar 

  36. Wilansky, A.: Summability through functional analysis. Elsevier, Netherlands (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This paper is a part of PhD thesis to be submitted to Fırat University by Koray İbrahim ATABEY. The authors are sincerely grateful to Prof. George E. Andrews for his kind help and encouragement during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koray İbrahim Atabey.

Ethics declarations

Conflict of interests

The authors state that their interests do not conflict with each other.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atabey, K.İ., Çınar, M. & Et, M. q-Fibonacci sequence spaces and related matrix transformations. J. Appl. Math. Comput. 69, 2135–2154 (2023). https://doi.org/10.1007/s12190-022-01825-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01825-9

Keywords

Navigation