Abstract
In this paper, we define the sequence spaces \(\ell _{p}(\widehat{F}_{q})\) \(\left( 1\le p< \infty \right) \), \(\ell _{\infty }(\widehat{F}_{q})\), \(c_{0}(\widehat{F}_{q})\) and \(c(\widehat{F}_{q})\) by using q-Fibonacci band matrix \(\widehat{F}_{q}\) defined by
We study some topological properties and give some inclusion relations for these spaces. In addition, we build a bases for the space \(\ell _{p}(\widehat{F}_{q})\), compute \(\alpha \)-, \(\beta \)-, \(\gamma \)- duals of the same space, characterize some matrix classes and examine some geometric properties.
Similar content being viewed by others
References
Aktuğlu, H., Bekar, Ş: On \(q\)-Cesàro matrix and \(q\)-statistical convergence. J. Comput. Appl. Math. 235(16), 4717–4723 (2011)
Andrews, G.E.: Fibonacci numbers and the Rogers-ramanujan identities. Fibonacci Quart. 42(1), 3–19 (2004)
Aytaç, P.: Some arithmetic properties of \(q\)-Fibonacci numbers. Master thesis, Akdeniz University (2018)
Başar, F., Dutta, H.: Summable spaces and their duals, matrix transformations and geometric properties. CRC Press, US (2020)
Bekar, Ş.: \(q-\) Matrix summability methods PhD Thesis, Eastern Mediterranean University (EMU) (2011)
Carlitz, L.: Fibonacci notes 3: \(q-\)Fibonacci numbers, (1974)
Çınar, M., Et, M.: \(q-\)Double cesaro matrices and \(q-\)statistical convergence of double sequences. Natl. Acade. Sci. Lett. 43(1), 73–76 (2020)
Demiriz, S., Şahin, A.: \(q\)-Cesàro sequence spaces derived by \(q\)-analogues. Adv. Math. 5(2), 97–110 (2016)
Diestel, J.: Sequences and series in Banach spaces. Springer Science and Business Media, NY (2012)
Et, M., Çolak, R.: On some generalized difference sequence spaces. Soochow J. Math. 21(4), 377–386 (1995)
Et, M., Esi, A.: On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malaysian Math. Sci. Soc. 23, 25–32 (2000)
García-Falset, J.: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20(3), 495–506 (1994)
García-Falset, J.: The fixed point property in Banach spaces with the NUS-property. J. Math. Anal. Appl. 215(2), 532–542 (1997)
Gökçe, F., Sarıgöl, M.A.: Series spaces derived from absolute Fibonacci summability and matrix transformations. Boll. Dell’Union. Matemat. Ital 13(1), 29–38 (2020)
Gökçe, F., Sarıgöl, M.A.: Some matrix and compact operators of the absolute Fibonacci series spaces. Kragujev. J. Math. 44(2), 273–286 (2020)
Hudzik, H., Karakaya, V., Mursaleen, M., Şimsek, N.: Banach-saks type and gurariǐ modulus of convexity of some banach sequence spaces. In Abstract and Applied Analysis, Hindawi (2014)
Hirschhorn, M.D.: Partitions and ramanujan’s continued fraction. Duke Math. J. 39(4), 789–791 (1972)
Mursaleen, M., Başar, F., Altay, B.: On the Euler sequence spaces which include the spaces \(\ell _{p}\) and \(\ell _{\infty }\). Nonlinear Anal. Theory Method. Appl. 65(3), 707–717 (2006)
Mursaleen, M., Tabassum, S., Fatma, R.: On \(q-\)Statistical summability method and its properties. Iran. J. Sci. Technol. Transact. A Sci. 46(2), 455–460 (2022)
Kac, V., Cheung, P.: Quantum calculus. Springer, New York (2002)
Kananthai, A., Musarleen, M., Sanhan, W., Suantai, S.: On property \((H)\) and rotundity of difference sequence spaces. J. Nonlinear Convex Anal. 3(3), 401–410 (2002)
Kara, E.E.: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013(1), 1–15 (2013)
Kara, E.E., İlkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear Multilinear Algebra 64(11), 2208–2223 (2016)
Kara, M.İ, Kara, E.E.: Matrix transformations and compact operators on Catalan sequence spaces. J. Math. Anal. Appl. 498(1), 124925 (2021)
Khan, V.A., Tuba, U.: On paranormed Ideal convergent sequence spaces defined by Jordan totient function. J. Inequal. Appl. 2021(1), 1–16 (2021)
Kirişçi, M., Başar, F.: Some new sequence spaces derived by the domain of generalized difference matrix. Comput. Math. Appl. 60(5), 1299–1309 (2010)
Knaust, H.: Orlicz sequence spaces of banach-saks type. Arch. Math. 59(6), 562–565 (1992)
Koshy, T.: Fibonacci and lucas numbers with applications. John Wiley and Sons, New York (2001)
Savaş, E., Karakaya, V., Şimşek, N.: Some \(\ell (p)-\) Type new sequence spaces and their geometric properties, Abstr. Appl. Anal., 2009, Article ID 696971 (2009)
Schur, I.: Ein beitrag zur additiven zahlentheorie, sitzungsber., akad. wissensch. berlin, phys,. Math. Klasse 302, 321 (1917)
Selmanogullari, T., Savaş, E., Rhoades, B.E.: On \(q\)-Hausdorff matrices. Taiwan. J. Math. 15(6), 2429–2437 (2011)
Stieglitz, M., Tietz, H.: Matrixtransformationen von folgenrä umen eine Ergebnisübersicht. Math. Z. 154, 1–16 (1977)
Yaying, T., Hazarika, B., Mursaleen, M.: On sequence space derived by the domain of \(q\)-Cesàro matrix in \(\ell _p\) space and the associated operator ideal. J. Math. Anal. Appl. 493(1), 1–17 (2021)
Yaying, T., Hazarika, B., Mursaleen, M.: On generalized \((p,q)\)-Euler matrix and associated sequence spaces, J. Funct. Sp, (2021)
Yaying, T., Hazarika, B., Chandra Tripathy, B., Mursaleen, M.: The spectrum of second order quantum difference operator. Symmetry 14(3), 557 (2022)
Wilansky, A.: Summability through functional analysis. Elsevier, Netherlands (2000)
Acknowledgements
This paper is a part of PhD thesis to be submitted to Fırat University by Koray İbrahim ATABEY. The authors are sincerely grateful to Prof. George E. Andrews for his kind help and encouragement during the preparation of this paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors state that their interests do not conflict with each other.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Atabey, K.İ., Çınar, M. & Et, M. q-Fibonacci sequence spaces and related matrix transformations. J. Appl. Math. Comput. 69, 2135–2154 (2023). https://doi.org/10.1007/s12190-022-01825-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01825-9