Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth Disease

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a fractional order mathematical model is constructed to describe the transmission of hand-foot-mouth disease. Two cases are considered: constant control and optimal control. In the former case, the existence and uniqueness of positive solutions are proved; then the sufficient conditions for the existence and stability of two equilibriums are obtained. In the latter case, the existence of an optimal control solution is obtained; next, the optimality control conditions are derived by using Pontryagin’s Maximum Principle. After that, some numerical simulations are performed to verify the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu, Q., Hao, Y., Ma, J., Yu, S., Wang, Y.: Surveillance of hand, foot, and mouth disease in mainland China (2008–2009). Biomed. Environ. Sci. 24, 349–356 (2011)

    Google Scholar 

  2. Huang, Y., Deng, T., Yu, S., et al.: Effect of meteorological variables on the incidence of hand, foot, and mouth disease in children: a time-series analysis in Guangzhou, China. BMC Infect. Dis. 13, 134 (2013)

    Google Scholar 

  3. Yang, T., Xu, G., Dong, H., et al.: A case-control study of risk factors for severe hand-foot-mouth disease among children in ningbo, China, 2010–2011. Eur. J. Pediatr. 171(9), 1359–1364 (2012)

    Google Scholar 

  4. Mathes, E.F., Oza, V., Frieden, I.J., et al.: “Eczema coxsackium” and unusual cutaneous findings in an enterovious outbreak. Pediatrics 132(1), 149–157 (2013)

    Google Scholar 

  5. Nguyen, N.T.B., Pham, H.V., Hoang, C.Q., et al.: Epidemiological and clinical characteristics of children who died from hand, foot and mouth disease in Vietnam, 2011. BMC Infect. Dis. 14, 341 (2014)

    Google Scholar 

  6. Cheng, J., Wu, J., Xu, Z., et al.: Associations between extreme precipitation and childhood hand, foot and mouth disease in urban and rural areas in hefei, China. Sci. Total Environ. 497–498, 484–490 (2014)

    Google Scholar 

  7. Roohanddeh, A., Rahimi, P., Sohrabi, A., et al.: Frequency of human enterovirus 71 in children under 8 years old with aseptic menengitis in Tehran. Clin. Lab. 59, 915–920 (2013)

    Google Scholar 

  8. Ljubin-Sternak, S., Slavic-Vrzic, V., Vilibić-Čavlek, T., et al.: Outbreak of hand, foot and mouth disease caused by coxsackie A16 virus in a childcare center incroatia, February–March 2011. Eur. Surveill. 16(21), 19875 (2011)

    Google Scholar 

  9. Cabreizo, M., Tarragó, D., Muñoz-Almagro, C., et al.: Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated with hand, foot and mouth disease in Spain. Clin. Microbiol. Infect. 20(3), 150–156 (2014)

    Google Scholar 

  10. Repass, G.L., Palmer, W.C., Stancampiano, F.F.: Hand, foot and mouth disease: identifying and managing an acute viral syndrome. Clevel. Clin. J. Med. 81(9), 537–543 (2014)

    Google Scholar 

  11. Yan, X., Gao, S., Xia, J.: Epidemic characteristics of hand, foot and mouth disease in shanghai from 2009–2010: enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infectious with coxsackievirus A16. Scand. J. Infect. Dis. 44(2011), 297–305 (2009)

    Google Scholar 

  12. Wang, H., Tsao, K., Hsieh, C., et al.: Inferring nonneutral evolution from contrasting patterns of polymorphisms and divergences in different protein coding regions of enterovirus 71 circulating in taiwan during 1998–2003. BMC Evol. Biol. 10(294), 1471–2148 (2010)

    Google Scholar 

  13. Yan, L., Li, X., et al.: Distribution and risk factors of hand, foot and mouth disease in Changchun, Northeastern China. Chin. Sci. Bull. 59, 533–538 (2014)

    Google Scholar 

  14. Chen, Z., Sun, H., Yan, Y., et al.: Epidemiological profiles of hand, foot and mouth disease, including meteorological factors, in Suzhou, China. Arch. Virol. 160(1), 315–321 (2014)

    Google Scholar 

  15. Du, J., Wang, X., Hu, Y., et al.: Changing aetiology of hand, foot and mouth disease in Lin-yi, China, 2009–2011. Clin. Microbiol. Infect. 20(1), 47–49 (2014)

    Google Scholar 

  16. Cao, F., Huang, P.: Epidemiological characteristics and temporal-spatial clustering analysis of hand, foot and mouth disease in Nanchang city 2008–2012. Scand. J. Infect. Dis. 47(1), 33–38 (2015)

    Google Scholar 

  17. Wang, J., Cao, Z., Zeng, D., et al.: Epidemiological analysis, detection and comparison of space-time patterns of beijing hand-foot-mouth disease (2008–2012). PloS One 9(3), e92745 (2014)

    Google Scholar 

  18. Tan, H., Cao, H.: The dynamics and optimal control of a Hand-foot-mouth disease model. Comput. Math. Methods Med. 2018, 1–11 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Yang, J., Chen, Y., Zhang, F.: Stability analysis and optimal control of a hand-foot-mouth disease (HFMD) model. J. Appl. Math. Comput. 41, 99–117 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Chen, K., Kim, S.: Il Hyo Jung, Hope bifurcation analysis and optimal control of treatment in a delayed oncolytic virus dynamics. Math. Comput. Simul. 149, 1–16 (2018)

    Google Scholar 

  21. Tiing, F.C.S., Labadin, J.: A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak. In Second Asia International Conference on Modeling and Simulation. 139, 947–952 (2008)

  22. Roy, N., Halder, N.: Compartmental modeling of hand, foot and mouth infectious disease (HFMD). Res. J. Appl. Sci. 5(3), 177–182 (2010)

    Google Scholar 

  23. Liu, J.: Threshold dynamics for a HFMD epidemic model with periodic transmission rate. Nonlinear Dyn. 64, 89–95 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Wang, L., Pang, L., Liu, S.: The date fitting and optimal control of a hand, foot and mouth disease (HFMD) model with stage structure. Appl. Math. Comput. 276, 61–74 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Wang, J., Xiao, Y., Cheke, R.A.: Modelling the effects of contaminated environments on HFMD infections in mainland China. BioSyst. 140, 1–7 (2016)

    Google Scholar 

  26. Huang, C., Cai, L., Cao, J.: Linear control for synchronization of a fractional-order time-delayed chaotic financial system. Chaos Solitons Fractals 113, 326–332 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Rakkiyappan, R., Velmurugan, G., Cao, J.: Stability analysis of fractional-order complex-valued neural networks with time delays. Chaos Solitons Fractals 78, 297–316 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real Word Appl. 26, 289–305 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Rihan, F.A., Abdel Rahman, D.H., Lakshmanan, S.: A time delay model of tumour-immune system interactions: global dynamics, parameter estimation, sensitivity analysis. Appl. Math. Comput. 232, 606–623 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Pinto, C.M., Carvalho, A.R.: A latency fractional order model for HIV dynamics. J. Comput. Appl. Math. 312, 240–256 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, (1998). Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Ma, Y., Liu, M., Hou, Q., et al.: Modelling seasonal HFMD with recessive infection in Shangdong, China. Math. Biosci. Eng. 10, 1159–1171 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Diethelm, K.: Monotonicity of functions and sign changes of their Caputo derivatives. Fract. Calc. Appl. Anal. 19, 561–566 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332, 709–726 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Wu, Z., Wang, Z., Zhou, T.: Global stability analysis of fractional-ordergene regulatory networks with time delay. Int. J. Biomath. 12(6), 1950067 (2019)

    MathSciNet  MATH  Google Scholar 

  37. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)

    MATH  Google Scholar 

  39. Lukes, D.L.: Differential Equations: Classical to Controll. Mathematics in Science and Engineering, p. 162. Academic Press, New York (1982)

    Google Scholar 

  40. Göllmann, L., Kern, D., Maurer, H.: Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optim. Control Appl. Methods 30(4), 341–365 (2009)

    MathSciNet  Google Scholar 

  41. Huang, C., Cao, J., Xiao, M., Alsaedi, A., Alsaadi, F.E.: Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments, which improved the quality of this paper greatly.

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors, RS, TL contributed to each part of this work equally and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ruiqing Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The data used to support the findings of this study are included within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Lu, T. Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth Disease. J. Appl. Math. Comput. 64, 565–590 (2020). https://doi.org/10.1007/s12190-020-01369-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01369-w

Keywords

Mathematics Subject Classification

Navigation