Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This article presents a higher-order parameter uniformly convergent method for a singularly perturbed delay parabolic reaction–diffusion initial-boundary-value problem. For the discretization of the time derivative, we use the implicit Euler scheme on the uniform mesh and for the spatial discretization, we use the central difference scheme on the Shishkin mesh, which provides a second-order convergence rate. To enhance the order of convergence, we apply the Richardson extrapolation technique. We prove that the proposed method converges uniformly with respect to the perturbation parameter and also attains almost fourth-order convergence rate. Finally, to support the theoretical results, we present some numerical experiments by using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: The interpolating element-free Galerkin method for solving Korteweg de Vries–Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn. 96, 1345–1365 (2019)

    Google Scholar 

  2. Ansari, A.R., Bakr, S.A., Shishkin, G.I.: A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. J. Comput. Appl. Math. 205, 552–566 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bansal, K., Rai, P., Sharma, K.K.: Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. Differ. Equ. Dyn. Syst. 25(2), 327–346 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Clavero, C., Gracia, J.L., Jorge, J.C.: Higher order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differ. Equ. 21, 149–169 (2005)

    MATH  Google Scholar 

  5. Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems. J. Comput. Appl. Math. 154, 415–429 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Das, A., Natesan, S.: Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection–diffusion problems on Shishkin mesh. Appl. Math. Comput. 271, 168–186 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Das, A., Natesan, S.: Second-order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equations. Int. J. Comput. Math. 95(3), 490–510 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Das, P., Natesan, S.: A uniformly convergent hybrid scheme for singularly perturbed system of reaction–diffusion Robin type boundary value problems. J. Appl. Math. Comput. 41(1–2), 447–471 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection–diffusion problems on adaptively generated mesh. Comput. Model. Eng. Sci. 90, 463–485 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24, 452–477 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Abbaszadeh, M.: Variational multiscale element-free Galerkin method combined with the moving kriging interpolation for solving some partial differential equations with discontinuous solutions. Comput. Appl. Math. 36, 1–37 (2017)

    MathSciNet  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M.: Error analysis and numerical simulation of magnetohydrodynamics (MHD) equation based on the interpolating element free Galerkin (IEFG) method. Appl. Numer. Math. 137, 252–273 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Derstine, M.W., Gibbs, H.M., Hopf, F.A., Kaplan, D.L.: Bifurcation gap in a hybrid optically bistable system. Phys. Rev. A 30, 3720–3722 (1982)

    Google Scholar 

  14. Kamraniana, M., Dehghan, M., Tatari, M.: An adaptive meshless local Petrov–Galerkin method based on a posteriori error estimation for the boundary layer problems. Appl. Numer. Math. 111, 181–196 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Dover, NewYork (1992)

    Google Scholar 

  16. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191. Academic Press Inc., Boston (1993)

    MATH  Google Scholar 

  17. Kumar, M., Sekhara Rao, S.C.: High order parameter-robust numerical method for time, dependent singularly perturbed reaction–diffusion problems. Computing 90(1–2), 15–38 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Kumar, D., Kumari, P.: A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay. J. Appl. Math. Comput. (2019). https://doi.org/10.1007/s12190-018-1174-z

    MathSciNet  MATH  Google Scholar 

  19. Ladyženskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith, Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)

  20. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  21. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15(1), 89–99 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Mohapatra, J., Natesan, S.: Uniformly convergent second-order numerical method for singularly perturbed delay differential equations. Neural Parallel Sci. Comput. 30, 353–370 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Mukherjee, K.: Parameter-uniform improved hybrid numerical scheme for singularly perturbed problems with interior layers. Math. Model. Anal. 2(23), 167–189 (2018)

    MathSciNet  Google Scholar 

  24. Raji Reddy, N., Mohapatra, J.: An efficient numerical method for singularly perturbed two point boundary value problems exhibiting boundary layers. Natl. Acad. Sci. Lett. 4(38), 355–359 (2015)

    MathSciNet  Google Scholar 

  25. Salama, A.A., Al-Amerya, D.G.: A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equations. Int. J. Comput. Math. 12(94), 2520–2546 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Singh, J., Kumar, S., Kumar, M.: A domain decomposition method for solving singularly perturbed parabolic reaction–diffusion problems with time delay. Numer. Methods Partial Differ. Equ. 34(5), 1849–1866 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Shishkin, G.I., Shishkina, L.P.: Difference Methods for Singular Perturbation Problems. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  28. Shishkin, G.I., Shishkina, L.P.: A Richardson scheme of the decomposition method for solving singularly perturbed parabolic reaction–diffusion equation. Comput. Math. Math. Phys. 50(12), 2003–2022 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Stein, R.B.: Some models of neuronal variability. Biophys. J. 7, 37–68 (1967)

    Google Scholar 

  30. Zhang, B., Zhou, Y.: Qualitative Analysis of Delay Partial Difference Equations. Hindawi Publishing Corporation, London (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to unknown reviewers for valuable remarks and comments which improved the paper. The financial support received from SERB, Govt. of India via the research Grant No. EMR/2016/005805 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarao, L., Mohapatra, J. & Das, A. A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics. J. Appl. Math. Comput. 63, 171–195 (2020). https://doi.org/10.1007/s12190-019-01313-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01313-7

Keywords

Mathematics Subject Classification

Navigation