Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The threshold of stochastic Gilpin–Ayala model subject to general Lévy jumps

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper investigates a stochastic Gilpin–Ayala model with general Lévy jumps and stochastic perturbation to around the positive equilibrium of corresponding deterministic model. Sufficient conditions for extinction are established as well as nonpersistence in the mean, weak persistence and stochastic permanence. The threshold between weak persistence and extinction is obtained. Asymptotic behavior around the positive equilibrium of corresponding deterministic model is discussed. Our results imply the general Lévy jumps is propitious to population survival when its intensity is more than 0, and some changes profoundly if not. Numerical simulink graphics are introduced to support the analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilpi, M.E., Ayala, F.G.: Global models of growth and competition. Proc. Natl. Acad. Sci. USA 70, 590–593 (1973)

    Google Scholar 

  2. Gilpin, M.E., Ayala, F.G.: Schoenner’ model and Drosophila competition. Theor. Popul. Biol. 9, 12–14 (1976)

    Article  Google Scholar 

  3. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  4. Gard, T.C.: Persistence in stochastic food web models. Bull. Math. Biol. 46, 357–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in populations dynamics. Stochast. Process. Appl. 97, 95–110 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wei, F., Wang, K.: The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Math. Anal. Appl. 331, 516–531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, X., Mao, X.: A note on almost sure asymptotic stability of neutral stochastic delay differential equations with Markovian switching. Automatica 48, 2329–2334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, W., Su, H., Wang, K.: Global stability analysis for stochastic coupled systems on networks. Automatica 47, 215–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Meng, Q., Jiang, H.J.: Robust stochastic stability analysis of Markovian switching genetic regulatory networks with discrete and distributed delays. Neurocomputing 74, 362–368 (2010)

    Article  Google Scholar 

  10. Li, X., Mao, X.: Population dynamical behavior of non-autonomous Lotka–Volterra competitive system with random perturbation. Discrete Contin. Dyn. Syst. 24, 523–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, M., Bai, C.: Optimal harvesting policy of a stochastic food chain population model. Appl. Math. Comput. 245, 265–270 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Liu, M., Bai, C., Wang, K.: Asymptotic stability of a two-group stochastic SEIR model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 19, 3444–3453 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lu, C., Ding, X.: Persistence and extinction in general non-autonomous logistic model with delays and stochastic perturbation. Appl. Math. Comput. 229, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu, C., Ding, X.: Persistence and extinction of a stochastic logistic model with delays and impulsive perturbation. Acta. Math. Sci. 34, 1551–1570 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, R., Zou, X., Wang, K.: Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 20, 965–974 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, M., Wang, K.: Asymptotic properties and simulations of a stochastic logistic model under regime switching. Math. Comput. Model. 54, 2139–2154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bao, J., Mao, X., Yin, G., Yuan, C.: Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bao, J., Yuan, C.: Stochastic population dynamics driven by Lévy noise. J. Math. Anal. Appl. 391, 363–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, M., Wang, K.: Dynamics of a Leslie–Gower Holling-type II predator–prey system with Lévy jumps. Nonlinear Anal. 85, 204–213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zou, X., Wang, K.: Numerical simulations and modeling for stochastic biological systems with jumps. Commun. Nonlinear Sci. Numer. Simul. 5, 1557–1568 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhang, X., Wang, K.: Stability analysis of a stochastic Gilpin–Ayala model driven by Lévy noise. Commun. Nonlinear Sci. Numer. Simul. 19, 1391–1399 (2014)

    Article  MathSciNet  Google Scholar 

  22. Liu, Q., Jiang, D., Shi, N., Hayat, T., Alsaedi, A.: Stochastic mutualism model with Lévy jumps. Commun. Nonlinear Sci. Numer. Simul. 43, 78–90 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zhu, Q.: Stability analysis of stochastic delay differential equations with Lévy noise. Syst. Control Lett. 118, 62–68 (2018)

    Article  MATH  Google Scholar 

  24. Zhu, Q.: Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching. Int. J. Control 90, 1703–1712 (2017)

    Article  MATH  Google Scholar 

  25. Zhu, Q.: Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise. J. Math. Anal. Appl. 416, 126–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, C., Ding, X.: Permanence and extinction of a stochastic delay logistic model with jumps. Math. Probl. Eng. 2014, Article ID 495275 (2014)

  27. Applebaum, D.: Lévy Processes and Stochastics Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  28. Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Wang, W., Ma, Z.: Permanence of a nonautomonous population model. Acta Math. Appl. Sin. Engl. Ser. 1, 86–95 (1998)

    MATH  Google Scholar 

  30. Hallam, T., Ma, Z.: Persistence in population models with demographic fluctuations. J. Math. Biol. 24, 327–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hallam, T., Ma, Z.: Effects of parameter fluctuations on community survival. Math. Biol. 86, 35–49 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    Article  MathSciNet  Google Scholar 

  33. Kunita, H.: Itô’s stochastic calculus: its surprising power for applications. Stochast. Process. Appl. 120, 622–652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, R., Zou, X., Wang, K.: Dynamics of logistic systems driven by Lévy noise under regime switching. Electron. J. Differ. Equ. 2014, 1–16 (2014)

    Article  MATH  Google Scholar 

  35. Zou, X., Wang, K.: Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps. Nonlinear Anal. 13, 32–44 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Bally, V., Talay, D.: The law of the euler scheme for stochastic differential equations. Probab. Theory Rel. 104, 43–60 (1996)

    Article  MATH  Google Scholar 

  37. Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by grants from the Natural Science Foundation of Shandong Province of China (Nos. ZR2018MA023 and ZR2017MA008), a Project of Shandong Province Higher Educational Science and Technology Program of China (Nos.J16LI09 and J18KA218), National Natural Science Foundation of China (No. 61803220).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Chen, L., Wang, Y. et al. The threshold of stochastic Gilpin–Ayala model subject to general Lévy jumps. J. Appl. Math. Comput. 60, 731–747 (2019). https://doi.org/10.1007/s12190-018-01234-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-018-01234-x

Keywords

Mathematics Subject Classifications

Navigation