Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Improving and evaluating boundary algebra filling for identifying polygon intersections

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Polygon intersection is important for data processing in geographic information systems. For large datasets, spatial indexing methods such as R-tree allow the identification of polygon intersections, but often retrieve inaccurate results. An improved boundary algebra filling (iBAF) method was preliminarily proposed as an alternative to R-tree. However, its applicability, performance, and accuracy require optimization, and its application conditions remain to be unveiled. This study develops version iBAF 2.0 for a more efficient identification and evaluates performance for different computational intensities and applications. Both intersecting polygons and raster zones within intersections can be rapidly grouped in the rasterized cells of input polygons. The resulting polygons can then be generated by configuring the polygon groups or converting the zones into vectors. We use complexity ratio CR, which is defined as the sum of the number of polygons in each actually intersecting group divided by the total number of polygons, to represent the computational intensity. Two land-use datasets containing 4295 and 741,562 polygons are considered, and we establish test cases containing the same polygons with varying CR. Experimental results show that iBAF 2.0 outperforms R-tree when applied to topology verification; however, its performance is conditional for polygon overlay and area calculation between two layers. Specifically, iBAF 2.0 exhibits higher-efficiency grouping of polygons and raster zones when CR exceeds specific thresholds. In addition, better scalability is achieved compared to R-tree when polygons with complex shapes and additional layers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant number 2017YFB0504205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Zhou.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Li, M. Improving and evaluating boundary algebra filling for identifying polygon intersections. Earth Sci Inform 12, 581–597 (2019). https://doi.org/10.1007/s12145-019-00405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-019-00405-z

Keywords

Navigation