Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Hermitian dual-containing LCD BCH codes and related quantum codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Let q be a prime power. In this paper, we investigate the maximum designed distances of LCD BCH codes over \(\mathbb {F}_{q^{2}}\) such that they contain their Hermitian dual codes, and also calculate their dimensions. As an application, we construct some quantum codes with good parameters from LCD BCH codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  Google Scholar 

  4. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inf. Theory 64, 3010–3017 (2018)

    Article  Google Scholar 

  5. Dougherty, S.T., Kim, J.L., Özkaya, B., Sok, L., Solè, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  7. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  8. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  9. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  10. Li, C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. 86, 2261–2278 (2018)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Ding, C., Li, S.: LCD cyclic codes over finite field. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Li, C., Ding, C.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Liu, Y., Li, R., Guo, G., Wang, J.: Some Nonprimitive BCH Codes and Related Quantum Codes. IEEE Trans. Inf. Theory 65(12), 7829–7839 (2019)

    Article  MathSciNet  Google Scholar 

  14. Li, F., Sun, X.: The Hermitian dual containing non-primitive BCH codes. IEEE Comm. Lett. 25(2), 379–382 (2021)

    Article  Google Scholar 

  15. Li, F., Yue, Q.: New quantum MDS-convolutional codes derived from constacyclic codes. Mod. Phys. Lett. B29, 1550252–1550263 (2015)

    Article  MathSciNet  Google Scholar 

  16. Li, F., Yue, Q., Wu, Y.: Designed distances and parameters of new LCD BCHcodes over finite fields. Cryptogr. Commun. 12, 147–163 (2020)

    Article  MathSciNet  Google Scholar 

  17. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(2), 0021–0035 (2013)

    MathSciNet  Google Scholar 

  18. Massey, J.L.: Reversible codes. Inf. Control. 7(3), 369–380 (1964)

    Article  MathSciNet  Google Scholar 

  19. Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(/107), 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  20. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North-Holland (1977)

    MATH  Google Scholar 

  21. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86 (7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  22. Shi, X., Yue, Q., Wu, Y.: The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes. Des. Codes Cryptogr. 87, 2165–2183 (2019)

    Article  MathSciNet  Google Scholar 

  23. Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  24. Yan, H., Liu, H., Li, C., Yang, S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yang, X., Massey, J.L.: The necessary and sufficient condition for a cyclic code to have a complementary dual. Discrete Math. 126(1), 391–393 (1994)

    Article  MathSciNet  Google Scholar 

  26. Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 5551–5554 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the reviewers and the Editor for their valuable suggestions that much improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwei Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper was supported by National Natural Science Foundation of China under Grants 12171420, 62172219, and Foundation of QingTan scholars of Zaozhuang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F. The Hermitian dual-containing LCD BCH codes and related quantum codes. Cryptogr. Commun. 14, 579–596 (2022). https://doi.org/10.1007/s12095-021-00543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00543-6

Keywords

Mathematics Subject Classification (2010)

Navigation