Abstract
Let q be a prime power. In this paper, we investigate the maximum designed distances of LCD BCH codes over \(\mathbb {F}_{q^{2}}\) such that they contain their Hermitian dual codes, and also calculate their dimensions. As an application, we construct some quantum codes with good parameters from LCD BCH codes.
Similar content being viewed by others
References
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inf. Theory 64, 3010–3017 (2018)
Dougherty, S.T., Kim, J.L., Özkaya, B., Sok, L., Solè, P.: The combinatorics of LCD codes: Linear Programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4, 116–128 (2017)
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Li, C.: Hermitian LCD codes from cyclic codes. Des. Codes Cryptogr. 86, 2261–2278 (2018)
Li, C., Ding, C., Li, S.: LCD cyclic codes over finite field. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)
Li, S., Li, C., Ding, C.: Two Families of LCD BCH codes. IEEE Trans. Inf. Theory 63(9), 5699–5717 (2017)
Liu, Y., Li, R., Guo, G., Wang, J.: Some Nonprimitive BCH Codes and Related Quantum Codes. IEEE Trans. Inf. Theory 65(12), 7829–7839 (2019)
Li, F., Sun, X.: The Hermitian dual containing non-primitive BCH codes. IEEE Comm. Lett. 25(2), 379–382 (2021)
Li, F., Yue, Q.: New quantum MDS-convolutional codes derived from constacyclic codes. Mod. Phys. Lett. B29, 1550252–1550263 (2015)
Li, F., Yue, Q., Wu, Y.: Designed distances and parameters of new LCD BCHcodes over finite fields. Cryptogr. Commun. 12, 147–163 (2020)
Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(2), 0021–0035 (2013)
Massey, J.L.: Reversible codes. Inf. Control. 7(3), 369–380 (1964)
Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(/107), 337–342 (1992)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier, North-Holland (1977)
Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86 (7), 1565–1572 (2018)
Shi, X., Yue, Q., Wu, Y.: The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes. Des. Codes Cryptogr. 87, 2165–2183 (2019)
Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)
Yan, H., Liu, H., Li, C., Yang, S.: Parameters of LCD BCH codes with two lengths. Adv. Math. Commun. 12(3), 579–594 (2018)
Yang, X., Massey, J.L.: The necessary and sufficient condition for a cyclic code to have a complementary dual. Discrete Math. 126(1), 391–393 (1994)
Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12(4), 5551–5554 (2014)
Acknowledgments
The author is very grateful to the reviewers and the Editor for their valuable suggestions that much improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The paper was supported by National Natural Science Foundation of China under Grants 12171420, 62172219, and Foundation of QingTan scholars of Zaozhuang University.
Rights and permissions
About this article
Cite this article
Li, F. The Hermitian dual-containing LCD BCH codes and related quantum codes. Cryptogr. Commun. 14, 579–596 (2022). https://doi.org/10.1007/s12095-021-00543-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-021-00543-6