Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exact 2-divisibility of exponential sums associated to boolean functions

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper we extend the covering method for computing the exact 2-divisibility of exponential sums of Boolean functions, improve results on the divisibility of the Hamming weight of deformations of Boolean functions, and provide criteria to obtain non-balanced functions. In particular, we present criteria to determine cosets of Reed-Muller codes that do not contain any balanced function, and to construct deformations of symmetric functions that are not balanced. The use of the covering method together with classifications of cosets of Reed-Muller codes obtained by the action of linear groups can improve the search of balanced functions in Reed-Muller codes dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arce-Nazario, R.A., Castro, F.N., González, O.E., Medina, L.A., Rubio, I.M.: New families of balanced symmetric functions and a generalization of Cusick, Li and Stănică’s conjecture. Des. Codes Crypt. https://doi.org/10.1007/s10623-017-0351-7 (2017)

  2. Ax, J.: Zeroes of polynomials over finite fields. Amer. J. Math. 86, 255–261 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Canteaut, A.: On the weight distributions of optimal cosets of the first-order Reed-Muller codes. IEEE Trans. Inform. Theory 47(1), 407–413 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C., Guillot, P.: A new representation of Boolean functions. In: Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), vol. 1719 of Lecture Notes in Comput. Sci., pp. 94–103. Springer, Berlin (1999)

  5. Castro, F., Rubio, I.M.: Exact p-divisibility of exponential sums via the covering method. Proc. Amer. Math. Soc. 143(3), 1043–1056 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, F.N., González, O.E., Medina, L.A.: A divisibility approach to the open boundary cases of Cusick-Li-Stănică’s conjecture. Cryptogr. Commun. 7(4), 379–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, F.N., Medina, L.A.: Linear recurrences and asymptotic behavior of exponential sums of symmetric Boolean functions. Electron. J. Combin. 18(2), Paper 8, 21 (2011)

    MATH  Google Scholar 

  8. Castro, F.N., Medina, L.A. , Rubio, I.M.: Exact divisibility of exponential sums over the binary field via the covering method. In: Groups, algebras and applications, vol. 537 of Contemp. Math., pp. 129–136. American Mathematical Society, Providence, RI (2011)

  9. Castro, F.N., Randriam, H., Rubio, I., Mattson, H.F. Jr.: Divisibility of exponential sums via elementary methods. J. Number Theory 130(7), 1520–1536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, F.N., Rubio, I.M.: Construction of systems of polynomial equations with exact p-divisibility via the covering method. J. Algebra Appl. 13(6), 1450013, 15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cusick, T.W., Cheon, Y.: Counting balanced Boolean functions in n variables with bounded degree. Experiment. Math. 16(1), 101–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cusick, T.W., Li, Yuan, Stănică, P.: Balanced symmetric functions over GF(p). IEEE Trans. Inform. Theory 54(3), 1304–1307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cusick, T.W., Li, Yuan, Stănică, P.: On a conjecture for balanced symmetric Boolean functions. J. Math. Cryptol. 3(4), 273–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications. Elsevier/Academic Press, Amsterdam (2009)

    MATH  Google Scholar 

  15. Gao, G.-P., Liu, W.-F., Zhang, X.-Y.: The degree of balanced elementary symmetric Boolean functions of 4k + 3 variables. IEEE Trans. Inform. Theory 57(7), 4822–4825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou, X.-D.: The covering radius of R(1, 9) in R(4, 9). Des. Codes Cryptogr. 8(3), 285–292 (1996)

    Article  MathSciNet  Google Scholar 

  17. Hou, X.-D.: On the covering radius of R(1, m) in R(3, m). IEEE Trans. Inform. Theory 42(3), 1035–1037 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou, X.-D.: GL(m, 2) acting on R(r, m)/R(r − 1, m). Discrete Math. 149(1–3), 99–122 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, X.-D.: p-ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl. 10(4), 566–582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katz, D.J.: Sharp p-divisibility of weights in abelian codes over \(\mathbb {Z}/p^{d}\mathbb {Z}\). IEEE Trans. Inform. Theory 54(12), 5354–5380 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katz, N.M.: On a theorem of Ax. Amer. J. Math. 93, 485–499 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. McGuire, G.: An alternative proof of a result on the weight divisibility of a cyclic code using supersingular curves. Finite Fields Appl. 18(2), 434–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moreno, O., Castro, F.N., Mattson, H.F. Jr.: Correction to: “Divisibility properties for covering radius of certain cyclic codes” [IEEE Trans. Inform. Theory 49 (2003), no. 12, 3299–3303; mr2045808] by Moreno and Castro. IEEE Trans. Inform. Theory 52(4), 1798–1799 (2006)

    Article  MathSciNet  Google Scholar 

  24. Moreno, O., Moreno, C.J.: The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes. IEEE Trans. Inform. Theory 40(6), 1894–1907 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Su, W., Tang, X., Pott, A.: A note on a conjecture for balanced elementary symmetric Boolean functions. IEEE Trans. Inform. Theory 59(1), 665–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ward, H.N.: Weight polarization and divisibility. Discrete Math. 83(2-3), 315–326 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors appreciate the comments and suggestions to the paper made the referees. They helped us to improve and clarify the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivelisse M. Rubio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, F.N., Medina, L.A. & Rubio, I.M. Exact 2-divisibility of exponential sums associated to boolean functions. Cryptogr. Commun. 10, 655–666 (2018). https://doi.org/10.1007/s12095-017-0252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0252-7

Keywords

Mathematics Subject Classification (2010)

Navigation