Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optimal p-ary cyclic codes with minimum distance four from monomials

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

For any odd prime p≥5, some optimal p-ary cyclic codes with parameters [p m−1,p m−2m−2,4] are presented by using perfect nonlinear monomials and the inverse function over \(\mathbb {F}_{p^{m}}\). In addition, almost perfect nonlinear monomials, and other monomials over \(\mathbb {F}_{5^{m}}\) are used to construct optimal quinary cyclic codes with parameters [5m−1,5m−2m−2,4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite Fields Appl. 32, 120–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bierbrauer, J.: New semifields, PN and APN functions. Des. Codes Crypt. 54, 189–200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Budaghyan, L., Helleseth, T.: Planar functions and commutative semifields. Tatra Mountains Mathematical Publications 45(1), 15–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P.L. (eds.) Chapter of the Monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp 398–469. Cambridge University Press, Cambridge (2010)

  5. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Crypt. 15, 125–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlet, C., Ding, C., Yuan, J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory 51, 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coulter, R.S., Matthews, R.: Planar functions and planes of the Lenz-Barlotti class II. Des. Codes Crypt. 10, 165–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, C., Yuan, J.: A family of skew Hadamard difference sets. J. Combin. Theory, ser. A 113, 1526C1535 (2006)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Helleseth, T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59(9), 5898–5904 (2013)

    Article  MathSciNet  Google Scholar 

  10. Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53(9), 3035–3041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Helleseth, T., Rong, C., Sandberg, D.: New families of almost perfect nonlinear power mappings. IEEE Trans. Inf. Theory 45, 475–485 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Leducq, E.: New families of APN functions in characteristic 3 or 5. In: Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics, vol. 574 pp. 115–123. AMS (2012)

  14. Li, C., Qu, L., Ling S.: On the covering structures of two classes of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 55(1), 70–82 (2009)

    Article  MathSciNet  Google Scholar 

  15. Li, N., Li, C., Helleseth, T., Ding, C., Tang, X.: Optimal ternary cyclic codes with minimum distance four and five. Finite Fields Appl. 30, 100–120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Li, N., Helleseth, T., Ding, C.: The weight distributions of several classes of cyclic codes from APN monomials. IEEE Trans. Inf. Theory 60(81), 4710–4721 (2009)

    MathSciNet  Google Scholar 

  17. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn.. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  18. Luo, J., Feng, K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Melas, C.M.: A cyclic code for double error correction. IBM. J. Res. Develop. 4, 364–366 (1960)

    MathSciNet  MATH  Google Scholar 

  20. Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of p-ary cyclic codes. Finite Fields Appl. 16(1), 56–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, X., Shan, J., Hu, L.: A triple-error-correcting cyclic code from the Gold and Kasami-Welch APN power functions. Finite Fields Appl. 18(1), 70–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zha, Z., Kyureghyan, G., Wang, X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15, 125–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zha, Z., Wang, X.: Power functions with low uniformity on odd characteristic finite fields. Sci. China Math 53(8), 1931–1940 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zha, Z., Wang, X.: Almost perfect nonlinear power functions in odd characteristic. IEEE Trans. Inf. Theory 57(7), 4826–4832 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zheng, D., Wang, X., Hu, L., Zeng, X.: The weight distributions of two classes of p-ary cyclic codes. Finite Fields Appl. 29, 202–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, Z., Ding, C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their helpful comments and suggestions. This research is supported by NNSF Grant of China (11371011, 61403157 and 61572027) and Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (KJ2015A256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangkui Xu or Xiwang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Cao, X. & Xu, S. Optimal p-ary cyclic codes with minimum distance four from monomials. Cryptogr. Commun. 8, 541–554 (2016). https://doi.org/10.1007/s12095-015-0159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-015-0159-0

Keywords

Mathematics Subject Classification (2010)

Navigation