Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Opportunistic TPSR cooperative spectrum sharing protocol with secondary user selection for 5G wireless network

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a cognitive radio system, where multiple secondary users coexist with one primary user. To improve the transmission efficiency of the system, we propose a cooperative spectrum sharing protocol with secondary user selection by using decode-and-forward and two-path successive relaying techniques. Furthermore, we derive the close-form of outage probability of the primary system. The upper bound of outage probability of the secondary system is also derived. In addition, the theoretical results are verified via numerical simulations. Numerical results show that the primary outage performance is much better than conventional selective relaying schemes. In the low secondary Signal-to-Noise Ratio region, the secondary outage performance is also better than conventional selective relaying schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang C, Li J, Guizani M, Anpalagan A, Elkashlan M (2016) Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wirel Commun 15(2):94–101

    Article  Google Scholar 

  2. Zhang Z, Zhang W, Zeadally S, Wang Y, Liu Y (2015) Cognitive radio spectrum sensing framework based on multi-agent arc hitecture for 5G networks. IEEE Wirel Commun 22(6):34–39

    Article  Google Scholar 

  3. Tseng F, Chou L, Chao H, Wang J (2015) Ultra-dense small cell planning using cognitive radio network toward 5G. IEEE Wirel Commun 22(6):76–83

    Article  Google Scholar 

  4. Quan W, Liu Y, Zhang H et al (2017) Enhancing crowd collaborations for software defined vehicular networks. IEEE Commun Mag 55(8):80–86

    Article  Google Scholar 

  5. Zhang M, Quan W, Cheng N, Wu Q, Zhu J, Zheng R, Li K (2019) Distributed conditional gradient online learning for IoT optimization. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2919562

  6. Zhang Z, Zhang W, Tseng F-H (2019) Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE Netw 33(1):70–76

    Article  Google Scholar 

  7. Ai Z, Liu Y, Song F, Zhang H (2018) A smart collaborative charging algorithm for mobile power distribution in 5G networks. IEEE Access 6:28668–28679

    Article  Google Scholar 

  8. Zhang M, Yang M, Wu Q et al (2018) Smart perception and autonomic optimization: a novel bio-inspired hybrid routing protocol for MANETs. Futur Gener Comput Syst 81:505–513

    Article  Google Scholar 

  9. Rankov B, Wittneben A (2007) Spectral efficient protocols for half duplex fading relay channels. IEEE J Sel Areas Commun 25(2):379–389

    Article  Google Scholar 

  10. Fan Y, Wang C, Thompson J, Poor HV (2007) Recovering multiplexing loss through successive relaying using repetition coding. IEEE Trans Wirel Commun 6(12):4484–4493

    Article  Google Scholar 

  11. Lv L, Chen J, Ni Q, Ding Z, Jiang H (2018) Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun Mag 56(4):188–195

    Article  Google Scholar 

  12. Han Y, Ting SH, Pandharipande A (2010) Cooperative spectrum sharing protocol with secondary user selection. IEEE Trans Wirel Commun 9(9):2914–2923

    Article  Google Scholar 

  13. N. Michelusi, M. Nokleby, U.i Mitra, and R. Calderbank “Multi-scale spectrum sensing in dense multi-cell cognitive networks,” IEEE Trans Wirel Commun, vol. 67, no. 4, pp. 2673–2688, 2019

  14. Mitola J, Maguire GQ (Aug. 1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  15. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  16. IEEE standard for information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements part 22.1: standard to enhance harmful interference protection for low-power licensed devices operating in tv broadcast bands. IEEE Std 802.22.1-2010, pp 1–145, 2010

  17. Goldsmith A, Jafar S, Maric I, Srinivasa S (2009) Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc IEEE 97(5):894–914

    Article  Google Scholar 

  18. Manna R, Louie RHY, Li Y, Vucetic B (2011) Cooperative spectrum sharing in cognitive radio networks with multiple antennas. IEEE Trans Signal Process 59(11):5509–5522

    Article  MathSciNet  Google Scholar 

  19. Han Y, Pandharipande A, Ting SH (2008) Cooperative spectrum sharing via controlled amplify-and-forward relaying. In: Proceedings of IEEE personal, indoor and mobile radio communications, pp 1–5

  20. Han Y, Pandharipande A, Ting SH (2009) Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Trans Wirel Commun 8(10):4945–4950

    Article  Google Scholar 

  21. Han Y, Ting SH, Pandharipande A (2012) Cooperative spectrum sharing protocol with selective relaying system. IEEE Trans Commun 60(1):62–67

    Article  Google Scholar 

  22. Zou Y, Zhu J, Zheng B, Yao Y (2010) An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Trans Signal Process 58(10):5438–5445

    Article  MathSciNet  Google Scholar 

  23. Woradit K, Quek TQS, Suwansantisuk W, Win MZ, Wuttisittikulkij L, Wymeersch H (2009) Outage behavior of selective relaying schemes. IEEE Trans Wirel Commun 8(8):3890–3895

    Article  Google Scholar 

  24. Chiarotto D, Simeone O (2011) Spectrum leasing via cooperative opportunistic routing techniques. IEEE Trans Wirel Commun 10(9):2960–2970

    Article  Google Scholar 

  25. Xie P, Li L, Zhu J, Jin J, Liu Y (2013) Cooperative spectrum leasing using parallel communication of secondary users. KSII Trans Internet Inf Syst 7(8):1770–1785

    Article  Google Scholar 

  26. Xie M, Zhang W (2010) A geometric approach to improve spectrum efficiency for cognitive relay networks. IEEE Trans Wirel Commun 9(1):268–281

    Article  Google Scholar 

  27. Tian F, Zhang W, Ma W-K, Ching PC, Poor HV (2011) An effective distributed space-time code for two-path successive relay network. IEEE Trans Commun 59(8):2254–2263

    Article  Google Scholar 

  28. Shi L, Zhang W, Ching PC (2011) Single-symbol decodable distributed STBC for two-path successive relaying networks. In: Proceedings of IEEE ICASSP, pp 3324–3327

  29. Zhai C, Zhang W (2013) Adaptive spectrum leasing with secondary user scheduling in cognitive radio networks. IEEE Trans Wirel Commun 12(7):3388–3398

    Article  Google Scholar 

  30. Zhang R (2009) On achievable rates of two-path successive relaying. IEEE Trans Commun 57(10):2914–2917

    Article  Google Scholar 

  31. Liau QY, Leow CL (2017) Analysis of opportunistic two-path successive relaying in consideration of inter-relay interference. IET Commun 11(1):76–84

    Article  Google Scholar 

  32. Wicaksana H, Ting SH, Ho CK, Chin WH, Guan YL (2009) AF two-path half duplex relaying with inter-relay self interference cancellation: diversity analysis and its improvement. IEEE Trans Wirel Commun 8(9):4720–4729

    Article  Google Scholar 

  33. Wicaksana H, Ting SH, Guan YL, Xia X-G (2011) Decode-and forward two-path half-duplex relaying: diversity-multiplexing tradeoff analysis. IEEE Trans Commun 59(6):1985–1994

    Article  Google Scholar 

  34. Fan J, Li L, Zhang H, Chen W (2017) Denoise-and-forward two-path successive relaying with DBPSK modulation. IEEE Wireless Commun Lett 6(1):42–45

    Google Scholar 

  35. Zhai C, Zhang W, Ching PC (2013) Cooperative spectrum sharing based on two-path successive relaying. IEEE Trans Commun 61(6):2260–2270

    Article  Google Scholar 

  36. Weber SP, Andrews JG, Yang X, de Veciana G (2007) Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans Inf Theory 53(8):2799–2814

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grants no. 61801171, no. 61701172, no. 61771185 and no. 61772175, in part by Key scientific research projects of the University of Henan Province (No.16A510005, No.17A520005 and No. 18A510009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xie.

Additional information

This article is part of the Topical Collection: Special Issue on Future Networking Applications Plethora for Smart Cities

Guest Editors: Mohamed Elhoseny, Xiaohui Yuan, and Saru Kumari

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX 1

From Eqs. (2) and (3), the probability of the two-path successive relaying being activated is given by

$$ {\displaystyle \begin{array}{l}\Pr \left\{{R}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^1\ge {R}_{\mathrm{P}},{R}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^2\ge {R}_{\mathrm{P}},{R}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^1\ge {R}_{\mathrm{P}},{R}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^2\ge {R}_{\mathrm{P}}\right\}\\ {}=\Pr \Big\{\frac{\left({2}^{R_P}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^{-\alpha }}\le {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}\right|}^2}{\left({2}^{R_P}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^{-\alpha }}-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^{-\alpha }},\\ {}\kern0.75em \frac{\left({2}^{R_P}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^{-\alpha }}\le {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}\right|}^2}{\left({2}^{R_P}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^{-\alpha }}-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^{-\alpha }}\Big\}\\ {}=\frac{\Omega_{1i}{\Omega}_{1j}\exp \left(-b1/{\Omega}_{1i}-b2/{\Omega}_{1j}-{x}_0\left(1/{\Omega}_{3 ij}-a1/{\Omega}_{1i}-a2/{\Omega}_{1j}\right)\right)}{\Omega_{1i}{\Omega}_{1j}+a1{\Omega}_{3 ij}{\Omega}_{1j}+a2{\Omega}_{1i}{\Omega}_{3 ij}}\\ {}+\exp \left(-\frac{c1}{\varOmega_{1i}}-\frac{c2}{\varOmega_{1j}}-\frac{x_0}{\varOmega_{3 ij}}\right)-\exp \left(-\frac{b2}{\varOmega_{1j}}-\frac{c1}{\varOmega_{1i}}-\frac{x_0}{\varOmega_{3 ij}}-\frac{a2{x}_0}{\varOmega_{1j}}\right)\\ {}\times \frac{\varOmega_{1j}}{\varOmega_{1j}+a2{\varOmega}_{3 ij}}-\frac{\varOmega_{1i}}{\varOmega_{1i}+a1{\varOmega}_{3 ij}}\exp \left(-\frac{b1}{\varOmega_{1i}}-\frac{c2}{\varOmega_{1j}}-\frac{x_0}{\varOmega_{3 ij}}-\frac{a1{x}_0}{\varOmega_{1i}}\right)\end{array}} $$
(23)

where x0 = max {(c1 − b1)/a1, (c2 − b2)/a2},\( b1=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_i}^{-\alpha } \), \( a1={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^{-\alpha } \), \( c1=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_i}^{-\alpha } \), \( a2={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^{-\alpha } \), \( c2=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_j}^{-\alpha } \), \( b2=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_j}^{-\alpha } \).

APPENDIX 2

From Eqs. (7) and (8), we have

  • \( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }} \),

  • \( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\ge \frac{\left({2}^{R_{\mathrm{P}}}-1\right){P}_S{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2+\frac{\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }} \),

  • \( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }} \), and

  • \( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\ge \frac{\left({2}^{R_{\mathrm{P}}}-1\right){P}_S{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2+\frac{\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }} \).

From (Eq. 21), the upper bound probability thatSTScan meet the Interference constraints is given by

$$ {\displaystyle \begin{array}{l}\Pr \left\{{P}_{\mathrm{S}}{g}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{ub}\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}},{P}_{\mathrm{S}}{g}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{ub}\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right\}\\ {}=\Pr \Big\{{P}_{\mathrm{S}}{\left(\left\lfloor \frac{K-1}{2}\right\rfloor {d}_3\right)}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^1,{P}_{\mathrm{S}}{\left(\left\lfloor \frac{K-1}{2}\right\rfloor {d}_3\right)}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^2,\\ {}{P}_{\mathrm{S}}{\left(\left\lfloor \frac{K-1}{2}\right\rfloor {d}_3\right)}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^1,{P}_{\mathrm{S}}{\left(\left\lfloor \frac{K-1}{2}\right\rfloor {d}_3\right)}^{-\alpha }{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\le {I}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^2\Big\}\\ {}={\lambda}_1+{\lambda}_2+{\lambda}_3+{\lambda}_4.\end{array}} $$
(24)

The calculation result of the upper bound probability consists of the following four components.

$$ {\displaystyle \begin{array}{l}{\lambda}_1=\frac{\Omega_{1\left(\mathrm{P}1\right)}{\Omega}_{1\left(\mathrm{P}2\right)}\exp \left(-c1/{\Omega}_{1\left(\mathrm{P}1\right)}-c2/{\Omega}_{1\left(\mathrm{P}2\right)}\right)}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\left({\varOmega}_{1(P1)}+b1{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)\left({\varOmega}_{1(P2)}+b2{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}\Big[-\exp \left(\left(\frac{b1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)\right)\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)}\\ {}\kern1em +\frac{\exp \left(-x0\left(a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a1/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\right)\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a1/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}-\exp \left(\left(\frac{b2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)\right)\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)}\\ {}\kern1em +\frac{\exp \left(-\frac{x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}-\frac{a1\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)/x0}-\frac{a2\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)/x0}\right)}{\frac{a1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{a2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}+\frac{a1\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}}\\ {}\kern1em \times \exp \left(\left(\frac{b1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}+\left(\frac{b2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)-\frac{a1\cdot x0}{\Omega_{1\left(\mathrm{P}1\right)}}-\frac{a2\cdot x0}{\Omega_{1\left(\mathrm{P}2\right)}}\Big],\end{array}} $$
$$ {\displaystyle \begin{array}{l}{\lambda}_2=\frac{\Omega_{1\left(\mathrm{P}1\right)}{\Omega}_{1\left(\mathrm{P}2\right)}\exp \left(-t1/{\Omega}_{1\left(\mathrm{P}1\right)}-t2/{\Omega}_{1\left(\mathrm{P}2\right)}\right)}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\left({\Omega}_{1\left(\mathrm{P}1\right)}+s1{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)\left({\Omega}_{1\left(\mathrm{P}2\right)}+s2{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}\Big[-\exp \left(\left(\frac{s2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)\right)\right)}{1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)}-\exp \left(\frac{-x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)\\ {}\kern1em \times \exp \left(\left(\frac{s1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}\right)\frac{\exp \left(-x0\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)\right)}{1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)}\\ {}\kern1em +{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\exp \left(\frac{-x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)+\exp \left(\left(\frac{s1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}+\left(\frac{s2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(\frac{1}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}+\frac{a1\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}\right)\right)}{\frac{1}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}+\frac{a1\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}}\Big],\end{array}} $$
$$ {\displaystyle \begin{array}{l}{\lambda}_3=\frac{-{\Omega}_{1\left(\mathrm{P}1\right)}{\Omega}_{1\left(\mathrm{P}2\right)}\exp \left(-c1/{\Omega}_{1\left(\mathrm{P}1\right)}-t2/{\Omega}_{1\left(\mathrm{P}2\right)}\right)}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\left({\Omega}_{1\left(\mathrm{P}1\right)}+b1{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)\left({\Omega}_{1\left(\mathrm{P}2\right)}+s2{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}\Big[\frac{\exp \left(-x0a1/{\Omega}_{1\left(\mathrm{P}1\right)}\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\\ {}\kern1em \times \exp \left(\frac{-x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)+\exp \left(\left(\frac{b1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}+\left(\frac{s2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(\frac{a1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{a1\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}\right)\right)}{\frac{a1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}+\frac{a1\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}}\\ {}\kern1em \times \exp \left(\frac{-x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)-\frac{\exp \left(-x0\left(a1/{\Omega}_{1\left(\mathrm{P}1\right)}+\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)\right)\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)}\\ {}\kern1em \times \exp \left(\left(\frac{b1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}-\frac{x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)-\exp \left(\left(\frac{s2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(a1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)\right)\right)}{a1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)}\Big],\end{array}} $$
$$ {\displaystyle \begin{array}{l}{\lambda}_4=\frac{-{\Omega}_{1\left(\mathrm{P}1\right)}{\Omega}_{1\left(\mathrm{P}2\right)}\exp \left(-t1/{\Omega}_{1\left(\mathrm{P}1\right)}-c2/{\Omega}_{1\left(\mathrm{P}2\right)}\right)}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\left({\Omega}_{1\left(\mathrm{P}1\right)}+s1{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)\left({\Omega}_{1\left(\mathrm{P}2\right)}+b2{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}\Big[-\exp \left(\frac{-x0a2}{\varOmega_{1(P2)}}+\frac{-x0}{\varOmega_{3(P1)(P2)}}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\frac{a1\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\left(\frac{s1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}\right)}{a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)a1/\left(s1-b1\right)}\\ {}\kern1em +\frac{\exp \left(-x0\left(\frac{a2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{a1\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}\right)\right)}{\frac{a2}{\varOmega_{1(P2)}}+\frac{1}{\varOmega_{3(P1)(P2)}}+\frac{a1\left(s1/{\Omega}_{1\left(\mathrm{P}1\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}1\right)}\right)}{\left(s1-b1\right)}+\frac{a2\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)}{\left(s2-b2\right)}}\\ {}\kern1em \times \exp \left(\left(\frac{s1}{\Omega_{1\left(\mathrm{P}1\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}1\right)}}\right)\frac{t1-c1}{s1-b1}+\left(\frac{b2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}-\frac{x0}{\Omega_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}\right)\\ {}\kern1em +\frac{\exp \left(-x0\left(a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}\right)\right)}{a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}}-\exp \left(\left(\frac{b2}{\Omega_{1\left(\mathrm{P}2\right)}}+\frac{1}{\Omega_{3\mathrm{S}\left(\mathrm{P}2\right)}}\right)\frac{t2-c2}{s2-b2}\right)\\ {}\kern1em \times \frac{\exp \left(-x0\left(a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)\right)\right)}{a2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\left(\mathrm{P}1\right)\left(\mathrm{P}2\right)}+\left(b2/{\Omega}_{1\left(\mathrm{P}2\right)}+1/{\Omega}_{3\mathrm{S}\left(\mathrm{P}2\right)}\right)a2/\left(s2-b2\right)}\Big].\end{array}}. $$

Where x0 = max {(t1 − c1)/a1, t2 − c2/a2},\( a2={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( t1=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}1}}^{-\alpha } \),\( t2=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}2}}^{-\alpha } \), \( a1={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \), \( s1=\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \),\( s2=\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( b1=-{P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \),\( c1=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}1}}^{-\alpha } \),\( b2=-{P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( c2=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}2}}^{-\alpha } \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Liu, J., Zhang, G. et al. Opportunistic TPSR cooperative spectrum sharing protocol with secondary user selection for 5G wireless network. Peer-to-Peer Netw. Appl. 13, 1272–1283 (2020). https://doi.org/10.1007/s12083-019-00843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00843-y

Keywords

Navigation