Abstract
In this paper, we consider a cognitive radio system, where multiple secondary users coexist with one primary user. To improve the transmission efficiency of the system, we propose a cooperative spectrum sharing protocol with secondary user selection by using decode-and-forward and two-path successive relaying techniques. Furthermore, we derive the close-form of outage probability of the primary system. The upper bound of outage probability of the secondary system is also derived. In addition, the theoretical results are verified via numerical simulations. Numerical results show that the primary outage performance is much better than conventional selective relaying schemes. In the low secondary Signal-to-Noise Ratio region, the secondary outage performance is also better than conventional selective relaying schemes.
Similar content being viewed by others
References
Yang C, Li J, Guizani M, Anpalagan A, Elkashlan M (2016) Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wirel Commun 15(2):94–101
Zhang Z, Zhang W, Zeadally S, Wang Y, Liu Y (2015) Cognitive radio spectrum sensing framework based on multi-agent arc hitecture for 5G networks. IEEE Wirel Commun 22(6):34–39
Tseng F, Chou L, Chao H, Wang J (2015) Ultra-dense small cell planning using cognitive radio network toward 5G. IEEE Wirel Commun 22(6):76–83
Quan W, Liu Y, Zhang H et al (2017) Enhancing crowd collaborations for software defined vehicular networks. IEEE Commun Mag 55(8):80–86
Zhang M, Quan W, Cheng N, Wu Q, Zhu J, Zheng R, Li K (2019) Distributed conditional gradient online learning for IoT optimization. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2919562
Zhang Z, Zhang W, Tseng F-H (2019) Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE Netw 33(1):70–76
Ai Z, Liu Y, Song F, Zhang H (2018) A smart collaborative charging algorithm for mobile power distribution in 5G networks. IEEE Access 6:28668–28679
Zhang M, Yang M, Wu Q et al (2018) Smart perception and autonomic optimization: a novel bio-inspired hybrid routing protocol for MANETs. Futur Gener Comput Syst 81:505–513
Rankov B, Wittneben A (2007) Spectral efficient protocols for half duplex fading relay channels. IEEE J Sel Areas Commun 25(2):379–389
Fan Y, Wang C, Thompson J, Poor HV (2007) Recovering multiplexing loss through successive relaying using repetition coding. IEEE Trans Wirel Commun 6(12):4484–4493
Lv L, Chen J, Ni Q, Ding Z, Jiang H (2018) Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing. IEEE Commun Mag 56(4):188–195
Han Y, Ting SH, Pandharipande A (2010) Cooperative spectrum sharing protocol with secondary user selection. IEEE Trans Wirel Commun 9(9):2914–2923
N. Michelusi, M. Nokleby, U.i Mitra, and R. Calderbank “Multi-scale spectrum sensing in dense multi-cell cognitive networks,” IEEE Trans Wirel Commun, vol. 67, no. 4, pp. 2673–2688, 2019
Mitola J, Maguire GQ (Aug. 1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18
Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220
IEEE standard for information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements part 22.1: standard to enhance harmful interference protection for low-power licensed devices operating in tv broadcast bands. IEEE Std 802.22.1-2010, pp 1–145, 2010
Goldsmith A, Jafar S, Maric I, Srinivasa S (2009) Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc IEEE 97(5):894–914
Manna R, Louie RHY, Li Y, Vucetic B (2011) Cooperative spectrum sharing in cognitive radio networks with multiple antennas. IEEE Trans Signal Process 59(11):5509–5522
Han Y, Pandharipande A, Ting SH (2008) Cooperative spectrum sharing via controlled amplify-and-forward relaying. In: Proceedings of IEEE personal, indoor and mobile radio communications, pp 1–5
Han Y, Pandharipande A, Ting SH (2009) Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Trans Wirel Commun 8(10):4945–4950
Han Y, Ting SH, Pandharipande A (2012) Cooperative spectrum sharing protocol with selective relaying system. IEEE Trans Commun 60(1):62–67
Zou Y, Zhu J, Zheng B, Yao Y (2010) An adaptive cooperation diversity scheme with best-relay selection in cognitive radio networks. IEEE Trans Signal Process 58(10):5438–5445
Woradit K, Quek TQS, Suwansantisuk W, Win MZ, Wuttisittikulkij L, Wymeersch H (2009) Outage behavior of selective relaying schemes. IEEE Trans Wirel Commun 8(8):3890–3895
Chiarotto D, Simeone O (2011) Spectrum leasing via cooperative opportunistic routing techniques. IEEE Trans Wirel Commun 10(9):2960–2970
Xie P, Li L, Zhu J, Jin J, Liu Y (2013) Cooperative spectrum leasing using parallel communication of secondary users. KSII Trans Internet Inf Syst 7(8):1770–1785
Xie M, Zhang W (2010) A geometric approach to improve spectrum efficiency for cognitive relay networks. IEEE Trans Wirel Commun 9(1):268–281
Tian F, Zhang W, Ma W-K, Ching PC, Poor HV (2011) An effective distributed space-time code for two-path successive relay network. IEEE Trans Commun 59(8):2254–2263
Shi L, Zhang W, Ching PC (2011) Single-symbol decodable distributed STBC for two-path successive relaying networks. In: Proceedings of IEEE ICASSP, pp 3324–3327
Zhai C, Zhang W (2013) Adaptive spectrum leasing with secondary user scheduling in cognitive radio networks. IEEE Trans Wirel Commun 12(7):3388–3398
Zhang R (2009) On achievable rates of two-path successive relaying. IEEE Trans Commun 57(10):2914–2917
Liau QY, Leow CL (2017) Analysis of opportunistic two-path successive relaying in consideration of inter-relay interference. IET Commun 11(1):76–84
Wicaksana H, Ting SH, Ho CK, Chin WH, Guan YL (2009) AF two-path half duplex relaying with inter-relay self interference cancellation: diversity analysis and its improvement. IEEE Trans Wirel Commun 8(9):4720–4729
Wicaksana H, Ting SH, Guan YL, Xia X-G (2011) Decode-and forward two-path half-duplex relaying: diversity-multiplexing tradeoff analysis. IEEE Trans Commun 59(6):1985–1994
Fan J, Li L, Zhang H, Chen W (2017) Denoise-and-forward two-path successive relaying with DBPSK modulation. IEEE Wireless Commun Lett 6(1):42–45
Zhai C, Zhang W, Ching PC (2013) Cooperative spectrum sharing based on two-path successive relaying. IEEE Trans Commun 61(6):2260–2270
Weber SP, Andrews JG, Yang X, de Veciana G (2007) Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans Inf Theory 53(8):2799–2814
Acknowledgments
This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grants no. 61801171, no. 61701172, no. 61771185 and no. 61772175, in part by Key scientific research projects of the University of Henan Province (No.16A510005, No.17A520005 and No. 18A510009).
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection: Special Issue on Future Networking Applications Plethora for Smart Cities
Guest Editors: Mohamed Elhoseny, Xiaohui Yuan, and Saru Kumari
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
APPENDIX 1
From Eqs. (2) and (3), the probability of the two-path successive relaying being activated is given by
where x0 = max {(c1 − b1)/a1, (c2 − b2)/a2},\( b1=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_i}^{-\alpha } \), \( a1={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_i}^{-\alpha } \), \( c1=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_i}^{-\alpha } \), \( a2={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_i,{\mathrm{S}\mathrm{T}}_j}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_j}^{-\alpha } \), \( c2=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_j}^{-\alpha } \), \( b2=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_j}^{-\alpha } \).
APPENDIX 2
From Eqs. (7) and (8), we have
-
\( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }} \),
-
\( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2\ge \frac{\left({2}^{R_{\mathrm{P}}}-1\right){P}_S{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}\right|}^2+\frac{\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha }} \),
-
\( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\le \frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{P_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2-\frac{\sigma^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }} \), and
-
\( {\left|{h}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2\ge \frac{\left({2}^{R_{\mathrm{P}}}-1\right){P}_S{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }}{\left|{h}_{{\mathrm{S}\mathrm{T}}_{\mathrm{S}},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}\right|}^2+\frac{\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2}{P_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }} \).
From (Eq. 21), the upper bound probability thatSTScan meet the Interference constraints is given by
The calculation result of the upper bound probability consists of the following four components.
Where x0 = max {(t1 − c1)/a1, t2 − c2/a2},\( a2={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( t1=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}1}}^{-\alpha } \),\( t2=\left({2}^{R_{\mathrm{P}}}-1\right){\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}2}}^{-\alpha } \), \( a1={P}_{\mathrm{S}}{d}_{{\mathrm{S}\mathrm{T}}_{\mathrm{P}1},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha }/\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \), \( s1=\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \),\( s2=\left({2}^{R_{\mathrm{P}}}-1\right){P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( b1=-{P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}1}}^{-\alpha } \),\( c1=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}1}}^{-\alpha } \),\( b2=-{P}_{\mathrm{S}}{\left(\left\lfloor \left(K-1\right)/2\right\rfloor {d}_3\right)}^{-\alpha }/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{S}\mathrm{T}}_{\mathrm{P}2}}^{-\alpha } \),\( c2=-{\sigma}^2/{P}_{\mathrm{P}}{d}_{\mathrm{P}\mathrm{T},{\mathrm{ST}}_{\mathrm{P}2}}^{-\alpha } \).
Rights and permissions
About this article
Cite this article
Xie, P., Liu, J., Zhang, G. et al. Opportunistic TPSR cooperative spectrum sharing protocol with secondary user selection for 5G wireless network. Peer-to-Peer Netw. Appl. 13, 1272–1283 (2020). https://doi.org/10.1007/s12083-019-00843-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12083-019-00843-y