Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Efficient combination policies for diffusion adaptive networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Diffusion adaptive networks (DANs) have many applications such as signal processing, mobile wireless sensor network and the internet of things (IoT). Unlike the classical centralized networks, a DAN uses the information exchange among local neighbors to solve global problems. The performance of the DAN highly depends on the combination matrix policies, which raises the issue of the optimal selection of the combination matrix. However, traditional combination policies focus on either the steady-state error or the convergence speed. Inspired by the solution of minimizing the mean square deviation (MSD) of the DAN, this paper proposes two efficient adaptive combination policies: 1) relative-instantaneous-error combination policy and 2) relative-deviation combination policy. These two policies are related to the inverse of noise by different metrics. Computer simulations verify that the proposed combination policies outperform the existing combination rules in either steady-state error or convergence rate in various noise environments. Finally, we apply the two combined rules to the collaborative target-tracking problem and achieve expected results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Tu S, Sayed AH (2011) Mobile adaptive networks. IEEE J Sel Top Signal Process 5(4):649–664

    Article  Google Scholar 

  2. Cattivelli FS, Sayed AH (2011) Modeling bird flight formations using diffusion adaptation. IEEE Trans Signal Process 59(5):2038–2051

    Article  MathSciNet  MATH  Google Scholar 

  3. Wan L, Han G, Zhang D, Li A, Feng N (2017) Distributed DOA estimation for arbitrary topology structure of mobile wireless sensor network using cognitive radio. Wirel Pers Commun 93(2):431–445

    Article  Google Scholar 

  4. Wan L, Han G, Jiang J, Rodrigues J, Feng N, Zhu T (2017) DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst J 11(1):41–49

    Article  Google Scholar 

  5. Wan L, Han G, Shu L, Feng N, Zhu C, Lloret J (2015) Distributed parameter estimation for mobile wireless sensor network based on cloud computing in battlefield surveillance system. IEEE Access 3:1729–1739

    Article  Google Scholar 

  6. Teng H, et al. (2018) Adaptive transmission range based topology control scheme for fast and reliable data collection. Wirel Commun Mob Comput 2018:1–21

    Google Scholar 

  7. Liu M, Song T, Gui G (2018) Deep cognitive perspective: resource allocation for NOMA based heterogeneous IoT with imperfect SIC. IEEE Internet Things J, 1–11. https://doi.org/10.1109/JIOT.2018.2876152

    Article  Google Scholar 

  8. Liu M, Yang J, Song T, Hu J, Gui G (2019) Deep learning-inspired message passing algorithm for efficient resource allocation in cognitive radio networks. IEEE Trans Veh Technol 68(1):641–653. https://doi.org/10.1109/TVT.2018.2883669

    Article  Google Scholar 

  9. Lv S, Lu Y, Dong M, Wang X, Dou Y, Zhuang W (2017) Qualitative action recognition by wireless radio signals in human-machine systems. IEEE Trans Human-Machine Syst 47(6):789–800

    Article  Google Scholar 

  10. Lu Y, Cheng C, Yang J, Gui G (2019) Improved hybrid precoding scheme for MmWave large-scale MIMO systems. IEEE Access 7(1):12027–12034. https://doi.org/10.1109/ACCESS.2019.2892136

    Article  Google Scholar 

  11. Huang H, Xia W, Xiong J, Yang J, Zheng G, Zhu X (2019) Unsupervised learning based fast beamforming design for downlink MIMO. IEEE Access 7 (1):7599–7605. https://doi.org/10.1109/ACCESS.2018.2887308

    Article  Google Scholar 

  12. Pan J, Yin Y, Xiong J, Wang L, Gui G, Sari H (2018) Deep learning-based unmanned surveillance systems for observing water levels. IEEE Access 6(1):73561–73571

    Article  Google Scholar 

  13. Xiong J, Long X, Shi R, Wang M, Yang J, Gui G (2018) Background error propagation model based RDO in HEVC for surveillance and conference video coding. IEEE Access 6(1):67206–67216

    Article  Google Scholar 

  14. Zhou T, Yang S, Wang L, Yao J, Gui G (2018) Improved cross-label suppression dictionary learning for face recognition. IEEE Access 6(1):48716–48725

    Article  Google Scholar 

  15. Chen L, Ho Y, Lee H, Wu H, Liu H (2017) An open framework for participatory PM2. 5 monitoring in smart cities. IEEE Access 5:14441–14454

    Article  Google Scholar 

  16. Tao M, Ota K, Dong M (2018) Locating compromised data sources in IoT-enabled smart cities: a great-alternative-region-based approach. IEEE Trans Ind Informatics 14(6):2579–2587

    Article  Google Scholar 

  17. Tao M, Ota K, Dong M (2017) Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes. Futur Gener Comput Syst 76:528–539

    Article  Google Scholar 

  18. Li D, Dong M, Yuan Y, Chen J, Ota K, Tang Y (2018) SEER-MCache: a prefetchable memory object caching system for IoT real-time data processing. IEEE Internet Things J 5(5):3648–3660

    Article  Google Scholar 

  19. Wang J, Fan S, Yang J, Xiong J, Gui G (2017) Reconsider the sparsity-induced least mean square algorithms on channel estimation. In: International wireless internet conference (WiCON), pp 85–102

    Google Scholar 

  20. Wang J, Yang J, Xiong J, Sari H, Gui G (2018) SHAFA: sparse hybrid adaptive filtering algorithm to estimate channels in various SNR environments. IET Commun 12(16):1963–1967

    Article  Google Scholar 

  21. Nedic A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Trans Automat Contr 54(1):48–61

    Article  MathSciNet  MATH  Google Scholar 

  22. Kar S, Moura JMF (2009) Distributed consensus algorithms in sensor networks with imperfect communication?: link failures and channel noise. IEEE Trans Signal Process 57(1):355–369

    Article  MathSciNet  MATH  Google Scholar 

  23. Srivastava K, Nedic A (2011) Distributed asynchronous constrained stochastic optimization. IEEE J Sel Top Signal Process 5(4):772–790

    Article  Google Scholar 

  24. Rabbat MG, Nowak RD (2005) Quantized incremental algorithms for distributed optimization. IEEE J Sel Areas Commun 23(4):798–808

    Article  Google Scholar 

  25. Lopes CG, Sayed AH (2007) Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process 55(8):4064–4077

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen J, Richard C, Hero AO, Sayed AH (2014) Diffusion LMS for multitask problems with overlapping hypothesis subspaces. In: IEEE international workshop on machine learning for signal processing, pp 1–6

  27. Sayed AH (2014) Adaptive networks. Proc IEEE 102(4):460–497

    Article  Google Scholar 

  28. Sayed AH, Tu S, Chen J, Zhao X, Towfic Z (2013) Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior. IEEE Signal Process Mag 30(3):155–171

    Article  Google Scholar 

  29. Sayed AH (2013) Diffusion adaptation over networks. Acad Press Libr Signal Process 61:1419–1433

    MATH  Google Scholar 

  30. Chen J, Sayed AH (2012) Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans Signal Process 60(8):4289–4305

    Article  MathSciNet  MATH  Google Scholar 

  31. Sayed AH (2014) Adaptation, learning, and optimization over networks. Found Trends Mach Learn 7(4–5):1–501

    MATH  Google Scholar 

  32. Tu S, Member S, Sayed AH (2012) Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans Signal Process 60(12):6217–6234

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao X, Sayed AH (2012) Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans Signal Process 60(10):5107–5124

    Article  MathSciNet  MATH  Google Scholar 

  34. Blondel VD, Hendrickx JM, Olshevsky A, Tsitsiklis JN (2005) Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of the 44th IEEE conference on decision and control, and the European control conference, pp 2996–3000

  35. Xiao L, Boyd S (2003) Fast linear iterations for distributed averaging. In: IEEE conference on decision and control, pp 65–78

  36. Scherber DS, Papadopoulos HC (2004) Locally constructed algorithms for distributed computations in ad-hoc networks. In: Information processing in sensor networks (IPSN), pp 11–19

  37. Xiao L, Boyd S, Lall S (2005) A scheme for robust distributed sensor fusion based on average consensus. Inf Process Sensor Netw, 63–70

  38. Cattivelli FS, Lopes CG, Sayed AH (2008) Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans Signal Process 56(5):1865–1877

    Article  MathSciNet  MATH  Google Scholar 

  39. Cattivelli FS, Sayed AH (2010) Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process 58(3):1035–1048

    Article  MathSciNet  MATH  Google Scholar 

  40. Takahashi N, Yamada I, Sayed AH (2010) Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans Signal Process 58(7):4795–4810

    Article  MathSciNet  MATH  Google Scholar 

  41. Tu S, Sayed AH (2011) Optimal combination rules for adaptation and learning over networks. In: IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), pp 317–320

  42. Yu C-K, Sayed AH (2013) A strategy for adjusting combination weights over adaptive networks. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4579–4583

  43. Wagner KT, Doroslovacki MI (2014) Combination coefficients for fastest convergence of distributed LMS estination. In: IEEE international conference on acoustic, speech and signal processing (ICASSP), pp 7218–7222

  44. Fernandez-Bes J, Arenas-Garca J, Silva Magno TM, Azpicueta-Ruiz LA (2017) Adaptive diffusion schemes for heterogeneous networks. IEEE Trans Signal Proecessing 65(21):5661–5674

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen J, Richard C, Sayed AH (2015) Diffusion LMS over multitask networks. IEEE Trans Signal Process 63(11):2733–2748

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, National Natural Science Foundation of China Grants (No. 61701258, No. 61501223), Jiangsu Specially Appointed Professor Program (No. RK002STP16001), Summit of the Six Top Talents Program of Jiangsu (No. XYDXX-010), Program for High-Level Entrepreneurial and Innovative Talents Introduction (No. CZ0010617002), NJUPTSF (No. NY215026) and 1311 Talent Plan of NJUPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Gui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Dai, F., Yang, J. et al. Efficient combination policies for diffusion adaptive networks. Peer-to-Peer Netw. Appl. 13, 123–136 (2020). https://doi.org/10.1007/s12083-019-00726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00726-2

Keywords

Navigation