Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Low-complexity time synchronization for energy-constrained wireless sensor networks: Dual-Clock delayed-message approach

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Due to the ability of sensor nodes to collaborate, time synchronization is essential for many sensor network operations. With the aid of hardware capabilities, this work presents a novel time synchronization method, which employs a dual-clock delayed-message approach, for energy-constrained wireless sensor networks (WSNs). To conserve WSN energy, this study adopts the flooding time synchronization scheme based on one-way timing messages. Via the proposed approach, the maximum-likelihood (ML) estimation of time parameters, such as clock skew and clock offset, can be obtained for time synchronization. Additionally, with the proposed scheme, the clock skew and offset estimation problem will be transformed into a problem independent of random delay and propagation delay. The ML estimation of link propagation delay, which can be used for localization systems in the proposed scenario, is also obtained. In addition to good performance, the proposed method has low complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this paper, the packet is the same as the message unless otherwise stated.

References

  1. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422

    Article  Google Scholar 

  2. Bulusu N, Jha S (2005) Wireless sensor networks: a systems perspective. Artech House, Norwood, MA

    MATH  Google Scholar 

  3. Hill J, Horton M, Kling R, Krishnamurthy L (2004) The platforms enabling wireless sensor networks. Commun ACM 47(6):41–46

    Article  Google Scholar 

  4. Project Sun SPOT Homepage. http://www.sunspotworld.com. Accessed 20 November 2008

  5. Szewczyk R, Osterweil E, Polastre J, Hamilton M, Mainwaring A, Estrin D (2004) Habitat monitoring with sensor networks. Commun ACM 6:34–40

    Article  Google Scholar 

  6. Johnson P, Andrews D (1996) Remote continuous physiological monitoring in the home. Commun J Telemed Telecare 2:107–113

    Article  Google Scholar 

  7. Akyildiz I, Akan O, Chen C, Fang J, Su W, Cayirci E (2003) InterPlaNetary internet: state-of-the-art and research challenges. Comput Netw 2:75–112

    Article  MATH  Google Scholar 

  8. Burleigh S, Cerf V, Durst R, Fall K, Hooke A, Scott K, Weiss H (2002) The interplanetary internet: a communications infrastructure for Mars exploration. In: 53rd International Astronautical Congress, The Word Space Congress, Houston, Texas, Oct. 2002

  9. Lemmerman L, Delin K, Hadaegh F, Lou M, Bhasin K, Bristow J, Connerton R, Pasciuto M (2000) Earth science vision: platform technology challenges. In: Proc. IGARSS, 2001

  10. Li Q, De Rosa M, Rus D (2003) Distributed algorithms for guiding navigation across a sensor network. In: Proc. of Ninth Annual International Conference on Mobile Computing and Networking, San Diego, USA, Sep. 2003, pp 313–326

  11. Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inf Syst 1:91–102

    Article  Google Scholar 

  12. Werb J, Lanzl C (1998) Designing a positioning system for finding things and people indoors. IEEE Spectr 35(9):71–78

    Article  Google Scholar 

  13. Rhee I-K, Lee J, Kim J, Serpedin E, Wu Y-C (2009) Clock synchronization in wireless sensor networks: an overview. Sensors 9:56–85

    Article  Google Scholar 

  14. Elson J, Girod L, Estrin D (2002) Fine-grained network time synchronization using reference broadcasts. In: Proc. OSDI, 2002

  15. Ganeriwal S, Kumar R, Srivastava M (2003) Time-sync protocol for sensor networks. In Proc. ACM SenSys, 2003, pp 138–149

  16. Noh K-L, Chaudhari Q, Serpedin E, Suter B (2007) Novel clock phase offset and skew estimation using two-way timing message exchanges for wireless sensor networks. IEEE Trans Commun 55(4):766–777

    Article  Google Scholar 

  17. Chaudhari Q, Serpedin E, Qaraqe K (2008) On maximum likelihood estimation of clock offset and skew in networks with exponential delays. IEEE Trans Signal Process 56(4):1685–1697

    Article  MathSciNet  Google Scholar 

  18. Sundararaman B, Buy U, Kshemkalyani A (2005) Clock synchronization for wireless sensor networks: a survey. Ad-Hoc Netw 3:281–323

    Article  Google Scholar 

  19. Maroti M, Kusy B, Simon G, Ledeczi A (2004) The flooding time synchronization protocol. In: Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, 2004, pp 39–49

  20. Akhlaq M, Sheltami TR (2013) RTSP: an accurate and energy-efficient protocol for clock synchronization in WSNs. IEEE Trans Instrum Meas 62(3):578–589

    Article  Google Scholar 

  21. Berger A, Pichler M, Klinglmayr J, Pötsch A, Springer A (2015) Low-complex synchronization algorithms for embedded wireless sensor networks. IEEE Trans Instrum Meas 64(4):1032–1042

    Article  Google Scholar 

  22. Hightower J, Borriello G, Want R (2000) SpotON: an indoor 3D location sensing technology based on RF signal strength. Univ. of Washington, Tech. Rep. UW CSE 00-02-02, Feb. 2000

  23. Bahl P, Padmanabhan VN (2000) RADAR: an in-building RF-based user location and tracking system. In: Proc. IEEE Joint Conf. IEEE Computer Communications Societies (INFOCOM), Tel Aviv, Israel, Mar. 2000, pp 775–784

  24. Bergamo P, Mazzini G (2002) Localization in sensor networks with fading and mobility. In: Proc. IEEE Int. Symp. Personal, Indoor Mobile Radio Communications (PIMRC), Lisbon, Portugal, Sep. 2002, pp 750–754

  25. Mills D (1991) Internet time synchronization: the network time protocol. IEEE Trans Commun 39(10):1482–1493

    Article  Google Scholar 

  26. Poovendran R, Wang C, Roy S (2007) Secure localization and time synchronization for wireless sensor and ad hoc networks, 1st edn. Springer, New York

    Book  Google Scholar 

  27. Noh K-L, Serpedin E, Qaraqe K (2008) A new approach for time synchronization in wireless sensor networks: pairwise broadcast synchronization. IEEE Trans Wirel Commun 7(9):3318–3322

    Article  Google Scholar 

  28. Noh K-L, Wu Y-C, Qaraqe K, Suter B (2008) Extension of pairwise broadcast clock synchronization for multicluster sensor networks. EURASIP J. Adv. Signal Process 2008, article ID 286168, 10 p. doi: 10.1155/2008/286168

  29. Syed A, Heidemann J (2005) Time synchronization for high latency acoustic networks. Tech. Rep. ISI-TR-2005-602

  30. Abdel-Ghaffar HS (2002) Analysis of synchronization algorithm with time-out control over networks with exponentially symmetric delays. IEEE Trans Commun 50(10):1652–1661

    Article  Google Scholar 

  31. David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the grant MOST 104-2221-E-006-117, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Long (William) Chin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YR., Chin, WL.(. Low-complexity time synchronization for energy-constrained wireless sensor networks: Dual-Clock delayed-message approach. Peer-to-Peer Netw. Appl. 10, 887–896 (2017). https://doi.org/10.1007/s12083-016-0437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-016-0437-4

Keywords

Navigation