Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An intelligent quasi-oppositional HBO technique to solve non-smooth non-convex economic dispatch problem

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

In this paper, a modified heap-based optimization (HBO) known as the quasi-oppositional heap-based optimization (QOHBO) method is endeavored to tackle the challenging problem of non-convex economic load dispatch problem (ELDP) in large-scale power systems. The QOHBO method leverages a heap data structure to emulate the concept of corporate ranking hierarchy. The mathematical model of HBO is based on the three strategies; first, the interaction between subordinates and their direct superior; second, interactions between contemporaries; third, the employees' self-contribution is adopted to perform both the exploration and exploitation in the search space. To enhance the solution quality and computational efficiency in solving ELDP, we integrate the concept of quasi-oppositional learning into HBO. The proposed QOHBO technique effectively addresses various constraints, including transmission line losses, valve-point loading effects, generator generation limits, prohibited operating zones, power demand compliance, and ramp rate limits. The feasibility of the QOHBO to solve ELDP is evaluated by conducting ten distinct case studies across nine diverse test systems, featuring generating units ranging from three to 140. Comparative analysis with existing techniques from the literature highlights the superior performance of our proposed method in solving large-scale ELD problems. Subsequently, non-parametric alternative tests specifically the Wilcoxon rank-sum test and the Friedman test has been conducted to verify the efficacy of the proposed QOHBO. Moreover, extensive statistical analysis reveals that the QOHBO technique has the ability to consistently provide quality solutions and its robustness when compared to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1 [58]
Algorithm 2 [58]
Fig. 1
Algorithm 3 [58]
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

HBO:

Heap based optimization

QOHBO:

Quasi-oppositional heap-based optimization

ELD:

Economic load dispatch

ELDP:

Economic load dispatch problem

VPL:

Valve-point loading

VPLE:

Valve-point loading effect

RRLs:

Ramp-rate limits

GOLs:

Generating operating limits

TLLs:

Transmission line losses

POZs:

Prohibited operating zones

GA:

Genetic algorithm

EP:

Evolutionary programming

PSO:

Particle swarm optimization

TLBO:

Teaching learning-based optimization

BBO:

Biogeography based optimization

GWO:

Grey wolf optimization

KHA:

Krill herd algorithm

OIWO:

Oppositional invasive weed optimization

ORCCRO:

Oppositional real coded chemical reaction

CPSO:

Chaotic PSO

SQP:

Sequential quadratic programming

GA-ACO:

Hybrid GA and ant colony optimization

CDE-QP:

Hybrid chaotic DE and quadratic programming

CCDE:

Colonial competitive DE

GSA:

Gravitational search algorithm

MCSA:

Modified crow search algorithm

SA:

Simulated annealing

ASA:

Adaptive simulated annealing

HBO:

Heap-based optimizer

CORH:

Corporate rank hierarchy

QOBL:

Quasi-oppositional based learning

FCF:

Fuel cost function

DE:

Differential evolution

OKHA:

Oppositional krill herd algorithm

References

  1. Kaboli SHA, Alqallaf AK (2019) Solving non-convex economic load dispatch problem via artificial cooperative search algorithm. Expert Syst Appl 128:14–27. https://doi.org/10.1016/j.eswa.2019.02.002

    Article  Google Scholar 

  2. Meng A, Li J, Yin H (2016) An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects. Energy 113:1147–1161. https://doi.org/10.1016/j.energy.2016.07.138

    Article  Google Scholar 

  3. Singh D, Dhillon JS (2019) Ameliorated grey wolf optimization for economic load dispatch problem. Energy 169:398–419. https://doi.org/10.1016/j.energy.2018.11.034

    Article  Google Scholar 

  4. Yin L et al (2020) A review of machine learning for new generation smart dispatch in power systems. Eng Appl Artif Intell 88(2019):103372. https://doi.org/10.1016/j.engappai.2019.103372

    Article  Google Scholar 

  5. Kunya AB, Abubakar AS, Yusuf SS (2023) Review of economic dispatch in multi-area power system: state-of-the-art and future prospective. Electr Power Syst Res 217(2022):109089. https://doi.org/10.1016/j.epsr.2022.109089

    Article  Google Scholar 

  6. Wood AJ, Wollenberg BF (1996) Power generation operation and control, vol 5. John Wiley and Sons, New Jersey

    Google Scholar 

  7. Papageorgiou LG, Fraga ES (2007) A mixed integer quadratic programming formulation for the economic dispatch of generators with prohibited operating zones. Electr Power Syst Res. https://doi.org/10.1016/j.epsr.2006.09.020

    Article  Google Scholar 

  8. Ng K-H, Sheble GB (1998) Direct load control-A profit-based load management using linear programming. IEEE Trans Power Syst 13(2):688–694. https://doi.org/10.1109/59.667401

    Article  Google Scholar 

  9. Chen C-L (2007) Non-convex economic dispatch: a direct search approach. Energy Convers Manag 48(1):219–225. https://doi.org/10.1016/j.enconman.2006.04.010

    Article  Google Scholar 

  10. Yang L, Fraga ES, Papageorgiou LG (2013) Mathematical programming formulations for non-smooth and non-convex electricity dispatch problems. Electr Power Syst Res 95:302–308. https://doi.org/10.1016/j.epsr.2012.09.015

    Article  Google Scholar 

  11. Chen CL, Wang SC (1993) Branch-and-bound scheduling for thermal generating units. IEEE Trans Energy Convers 8(2):184–189. https://doi.org/10.1109/60.222703

    Article  Google Scholar 

  12. Bulbul SMA, Pradhan M, Roy PK, Pal T (2018) Opposition-based krill herd algorithm applied to economic load dispatch problem. Ain Shams Eng J 9(3):423–440. https://doi.org/10.1016/j.asej.2016.02.003

    Article  Google Scholar 

  13. Zhang Q, Zou D, Duan N, Shen X (2019) An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem. Appl Soft Comput J 78:641–669. https://doi.org/10.1016/j.asoc.2019.03.019

    Article  Google Scholar 

  14. Walters DC, Sheble GB (1993) Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 8(3):1325–1332. https://doi.org/10.1109/59.260861

    Article  Google Scholar 

  15. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7(1):83–94. https://doi.org/10.1109/TEVC.2002.806788

    Article  Google Scholar 

  16. Gaing ZL (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195. https://doi.org/10.1109/TPWRS.2003.814889

    Article  Google Scholar 

  17. Sahoo S, Mahesh Dash K, Prusty RC, Barisal AK (2015) Comparative analysis of optimal load dispatch through evolutionary algorithms. Ain Shams Eng J 6(1):107–120. https://doi.org/10.1016/j.asej.2014.09.002

    Article  Google Scholar 

  18. Banerjee S, Maity D, Chanda CK (2015) Teaching learning based optimization for economic load dispatch problem considering valve point loading effect. Int J Electr Power Energy Syst 73:456–464. https://doi.org/10.1016/j.ijepes.2015.05.036

    Article  Google Scholar 

  19. Bhattacharya A, Chattopadhyay PK (2010) Biogeography-Based Optimization for Different Economic Load Dispatch Problems. IEEE Trans Power Syst 25(2):1064–1077. https://doi.org/10.1109/TPWRS.2009.2034525

    Article  Google Scholar 

  20. Yu JJQ, Li VOK (2016) A social spider algorithm for solving the non-convex economic load dispatch problem. Neurocomputing 171:955–965. https://doi.org/10.1016/j.neucom.2015.07.037

    Article  Google Scholar 

  21. Srivastava A, Das DK (2020) A new Kho-Kho optimization Algorithm: an application to solve combined emission economic dispatch and combined heat and power economic dispatch problem. Eng Appl Artif Intell 94:103763. https://doi.org/10.1016/j.engappai.2020.103763

    Article  Google Scholar 

  22. Pradhan M, Roy PK, Pal T (2016) Grey wolf optimization applied to economic load dispatch problems. Int J Electr Power Energy Syst 83:325–334. https://doi.org/10.1016/j.ijepes.2016.04.034

    Article  Google Scholar 

  23. Zhang XY, Hao WK, Wang JS, Zhu JH, Zhao XR, Zheng Y (2023) Manta ray foraging optimization algorithm with mathematical spiral foraging strategies for solving economic load dispatching problems in power systems. Alex Eng J 70:613–640. https://doi.org/10.1016/j.aej.2023.03.017

    Article  Google Scholar 

  24. Hassan MH, Kamel S, Jurado F, Ebeed M, Elnaggar MF (2023) Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer. Alex Eng J 72:573–591. https://doi.org/10.1016/j.aej.2023.04.002

    Article  Google Scholar 

  25. Hassan MH, Kamel S, Eid A, Nasrat L, Jurado F, Elnaggar MF (2023) A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng J 14(5):102083. https://doi.org/10.1016/j.asej.2022.102083

    Article  Google Scholar 

  26. Al-Betar MA et al (2023) A hybrid Harris Hawks optimizer for economic load dispatch problems. Alex Eng J 64:365–389. https://doi.org/10.1016/j.aej.2022.09.010

    Article  Google Scholar 

  27. Liu T, Xiong G, Wagdy Mohamed A, Nagaratnam Suganthan P (2022) Opposition-mutual learning differential evolution with hybrid mutation strategy for large-scale economic load dispatch problems with valve-point effects and multi-fuel options. Inf Sci 609:1721–1745. https://doi.org/10.1016/j.ins.2022.07.148

    Article  Google Scholar 

  28. Habib S, Ahmadi M, Shokouhandeh H (2023) Economic dispatch optimization considering operation cost and environmental constraints using the HBMO method. Energy Rep 10:1718–1725. https://doi.org/10.1016/j.egyr.2023.08.032

    Article  Google Scholar 

  29. Farhan Tabassum M, Saeed M, Ahmad Chaudhry N, Ali J, Farman M, Akram S (2020) Evolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effects. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2020.04.006

    Article  Google Scholar 

  30. Elsayed WT, Hegazy YG, Bendary FM, El-bages MS (2016) Modified social spider algorithm for solving the economic dispatch problem. Eng Sci Technol an Int J 19(4):1672–1681. https://doi.org/10.1016/j.jestch.2016.09.002

    Article  Google Scholar 

  31. Mohammadi-Ivatloo B, Rabiee A, Soroudi A, Ehsan M (2012) Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. Int J Electr Power Energy Syst 42(1):508–516. https://doi.org/10.1016/j.ijepes.2012.04.060

    Article  Google Scholar 

  32. Vlachogiannis JG, Lee KY (2009) Economic load dispatch—a comparative study on heuristic optimization techniques with an improved. IEEE Trans Power Syst 24(2):991–1001

    Article  Google Scholar 

  33. Alsumait JS, Sykulski JK, Al-Othman AK (2010) A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems. Appl Energy 87(5):1773–1781. https://doi.org/10.1016/j.apenergy.2009.10.007

    Article  Google Scholar 

  34. Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new Modified Differential Evolution algorithm. Int J Electr Power Energy Syst 32(8):893–903. https://doi.org/10.1016/j.ijepes.2010.01.023

    Article  Google Scholar 

  35. Barisal AK, Prusty RC (2015) Large scale economic dispatch of power systems using oppositional invasive weed optimization. Appl Soft Comput J 29:122–137. https://doi.org/10.1016/j.asoc.2014.12.014

    Article  Google Scholar 

  36. Bhattacharjee K, Bhattacharya A, Dey SHN (2014) Oppositional real coded chemical reaction optimization for different economic dispatch problems. Int J Electr Power Energy Syst 55:378–391. https://doi.org/10.1016/j.ijepes.2013.09.033

    Article  Google Scholar 

  37. Cai J, Li Q, Li L, Peng H, Yang Y (2012) A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects. Energy Convers Manag 53(1):175–181. https://doi.org/10.1016/j.enconman.2011.08.023

    Article  Google Scholar 

  38. Chaturvedi KT, Pandit M, Srivastava L (2008) Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans Power Syst 23(3):1079–1087. https://doi.org/10.1109/TPWRS.2008.926455

    Article  Google Scholar 

  39. Ciornei I, Kyriakides E (2012) A GA-API solution for the economic dispatch of generation in power system operation. IEEE Trans Power Syst 27(1):233–242. https://doi.org/10.1109/TPWRS.2011.2168833

    Article  Google Scholar 

  40. Dos Santo Coelho L, Bora TC, Mariani VC (2014) Differential evolution based on truncated Lévy-type flights and population diversity measure to solve economic load dispatch problems. Int J Electr Power Energy Syst 57:178–188. https://doi.org/10.1016/j.ijepes.2013.11.024

    Article  Google Scholar 

  41. dos Santos Coelho L, Mariani VC (2006) Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans Power Syst 21(2):989–996. https://doi.org/10.1109/TPWRS.2006.873410

    Article  Google Scholar 

  42. El-Sayed WT, El-Saadany EF, Zeineldin HH, Al-Sumaiti AS (2020) Fast initialization methods for the nonconvex economic dispatch problem. Energy 201:117635. https://doi.org/10.1016/j.energy.2020.117635

    Article  Google Scholar 

  43. Ghasemi M, Taghizadeh M, Ghavidel S, Abbasian A (2016) Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. Appl Soft Comput J 40:342–363. https://doi.org/10.1016/j.asoc.2015.11.033

    Article  Google Scholar 

  44. Gholamghasemi M, Akbari E, Asadpoor MB, Ghasemi M (2019) A new solution to the non-convex economic load dispatch problems using phasor particle swarm optimization. Appl Soft Comput J 79:111–124. https://doi.org/10.1016/j.asoc.2019.03.038

    Article  Google Scholar 

  45. He X, Rao Y, Huang J (2016) A novel algorithm for economic load dispatch of power systems. Neurocomputing 171:1454–1461. https://doi.org/10.1016/j.neucom.2015.07.107

    Article  Google Scholar 

  46. Hosseinnezhad V, Babaei E (2013) Economic load dispatch using θ-PSO. Int J Electr Power Energy Syst 49(1):160–169. https://doi.org/10.1016/j.ijepes.2013.01.002

    Article  Google Scholar 

  47. Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT (2014) Species-based quantum particle swarm optimization for economic load dispatch. Int J Electr Power Energy Syst 63:311–322. https://doi.org/10.1016/j.ijepes.2014.05.066

    Article  Google Scholar 

  48. Jiang S, Ji Z, Shen Y (2014) A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int J Electr Power Energy Syst 55:628–644. https://doi.org/10.1016/j.ijepes.2013.10.006

    Article  Google Scholar 

  49. Kavousi-Fard A, Khosravi A (2016) An intelligent θ-Modified Bat Algorithm to solve the non-convex economic dispatch problem considering practical constraints. Int J Electr Power Energy Syst 82:189–196. https://doi.org/10.1016/j.ijepes.2016.03.017

    Article  Google Scholar 

  50. Kumar M, Dhillon JS (2018) Hybrid artificial algae algorithm for economic load dispatch. Appl Soft Comput J 71:89–109. https://doi.org/10.1016/j.asoc.2018.06.035

    Article  Google Scholar 

  51. Kumar M, Dhillon JS (2019) A conglomerated ion-motion and crisscross search optimizer for electric power load dispatch. Appl Soft Comput J 83:105641. https://doi.org/10.1016/j.asoc.2019.105641

    Article  Google Scholar 

  52. Mohammadi F, Abdi H (2018) A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Appl Soft Comput J 71:51–65. https://doi.org/10.1016/j.asoc.2018.06.040

    Article  Google Scholar 

  53. Nguyen TT, Vo DN (2015) The application of one rank cuckoo search algorithm for solving economic load dispatch problems. Appl Soft Comput J 37:763–773. https://doi.org/10.1016/j.asoc.2015.09.010

    Article  Google Scholar 

  54. Parouha RP, Das KN (2016) A novel hybrid optimizer for solving Economic Load Dispatch problem. Int J Electr Power Energy Syst 78:108–126. https://doi.org/10.1016/j.ijepes.2015.11.058

    Article  Google Scholar 

  55. Parouha RP, Das KN (2016) DPD: an intelligent parallel hybrid algorithm for economic load dispatch problems with various practical constraints. Expert Syst Appl 63:295–309. https://doi.org/10.1016/j.eswa.2016.07.012

    Article  Google Scholar 

  56. Silva Chavez JC, Zamora-Mendez A, Arrieta Paternina MR, Yrena-Heredia JF, Cardenas Javier R (2019) A hybrid optimization framework for the non-convex economic dispatch problem via meta-heuristic algorithms. Electr Power Syst Res 177:105999. https://doi.org/10.1016/j.epsr.2019.105999

    Article  Google Scholar 

  57. Zou D, Li S, Wang GG, Li Z, Ouyang H (2016) An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects. Appl Energy 181:375–390. https://doi.org/10.1016/j.apenergy.2016.08.067

    Article  Google Scholar 

  58. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:113702. https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  59. Shaheen AM, El-Sehiemy RA, Hasanien HM, Ginidi AR (2022) An improved heap optimization algorithm for efficient energy management based optimal power flow model. Energy 250:123795. https://doi.org/10.1016/j.energy.2022.123795

    Article  Google Scholar 

  60. Shaheen AM, Elsayed AM, Ginidi AR, El-Sehiemy RA, Elattar E (2022) A heap-based algorithm with deeper exploitative feature for optimal allocations of distributed generations with feeder reconfiguration in power distribution networks. Knowl Based Syst 241:108269. https://doi.org/10.1016/j.knosys.2022.108269

    Article  Google Scholar 

  61. Elaziz MA, El-Said EMS, Elsheikh AH, Abdelaziz GB (2022) Performance prediction of solar still with a high-frequency ultrasound waves atomizer using random vector functional link/heap-based optimizer. Adv Eng Softw 170:103142. https://doi.org/10.1016/j.advengsoft.2022.103142

    Article  Google Scholar 

  62. Srinivasa Reddy A, Vaisakh K (2013) Shuffled differential evolution for economic dispatch with valve point loading effects. Int J Electr Power Energy Syst 46(1):342–352. https://doi.org/10.1016/j.ijepes.2012.10.012

    Article  Google Scholar 

  63. Roy P, Roy P, Chakrabarti A (2013) Modified shuffled frog leaping algorithm with genetic algorithm crossover for solving economic load dispatch problem with valve-point effect. Appl Soft Comput J 13(11):4244–4252. https://doi.org/10.1016/j.asoc.2013.07.006

    Article  Google Scholar 

  64. Meng K, Wang HG, Dong ZY, Wong KP (2010) Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans Power Syst 25(1):215–222. https://doi.org/10.1109/TPWRS.2009.2030359

    Article  Google Scholar 

  65. Chakraborty S, Senjyu T, Yona A, Saber AY, Funabashi T (2011) Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimisation. IET Gener Transm Distrib 5(10):1042–1052. https://doi.org/10.1049/iet-gtd.2011.0038

    Article  Google Scholar 

  66. Vishwakarma KK, Dubey HM (2012) Simulated annealing based optimization for solving large scale economic load dispatch problems. Int J Eng Res ang Technol 1(3):1–8

    Google Scholar 

  67. Ching-Tzong Su, Lin C-T (2000) New approach with a Hopfield modeling framework to economic dispatch. IEEE Trans Power Syst 15(2):541–545. https://doi.org/10.1109/59.867138

    Article  Google Scholar 

  68. Tsai MT, Gow HJ, Lin WM (2011) A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions. Int J Electr Power Energy Syst 33(4):1070–1076. https://doi.org/10.1016/j.ijepes.2011.01.026

    Article  Google Scholar 

  69. Niknam T, Mojarrad HD, Meymand HZ (2011) A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects. Energy Convers Manag 52(4):1800–1809. https://doi.org/10.1016/j.enconman.2010.11.004

    Article  Google Scholar 

  70. Roy PK, Bhui S, Paul C (2014) Solution of economic load dispatch using hybrid chemical reaction optimization approach. Appl Soft Comput J 24:109–125. https://doi.org/10.1016/j.asoc.2014.07.013

    Article  Google Scholar 

  71. Amjady N, Nasiri-Rad H (2010) Solution of nonconvex and nonsmooth economic dispatch by a new adaptive real coded genetic algorithm. Expert Syst Appl 37(7):5239–5245. https://doi.org/10.1016/j.eswa.2009.12.084

    Article  Google Scholar 

  72. Selvakumar AI, Thanushkodi K (2009) Optimization using civilized swarm: Solution to economic dispatch with multiple minima. Electr Power Syst Res 79(1):8–16. https://doi.org/10.1016/j.epsr.2008.05.001

    Article  Google Scholar 

  73. Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25(4):1955–1964. https://doi.org/10.1109/TPWRS.2010.2043270

    Article  Google Scholar 

  74. Victoire TAA, Jeyakumar AE (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr Power Syst Res 71(1):51–59. https://doi.org/10.1016/j.epsr.2003.12.017

    Article  Google Scholar 

  75. Park J-B, Lee K-S, Shin J-R, Lee KY (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans Power Syst 20(1):34–42. https://doi.org/10.1109/TPWRS.2004.831275

    Article  Google Scholar 

  76. Coelho LDS, Mariani VC (2010) An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers Manag 51(12):2580–2587. https://doi.org/10.1016/j.enconman.2010.05.022

    Article  Google Scholar 

  77. Pereira-Neto A, Unsihuay C, Saavedra OR (2005) Efficient evolutionary strategy optimisation procedure to solve the nonconvex economic dispatch problem with generator constraints. IEE Proc Gener Transm Distrib 152(5):653. https://doi.org/10.1049/ip-gtd:20045287

    Article  Google Scholar 

  78. Niknam T (2010) A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl Energy 87(1):327–339. https://doi.org/10.1016/j.apenergy.2009.05.016

    Article  Google Scholar 

  79. Chiang C-L (2007) Genetic-based algorithm for power economic load dispatch. IET Gener Transm Distrib 1(2):261–269. https://doi.org/10.1049/iet-gtd:20060130

    Article  Google Scholar 

  80. Subbaraj P, Rengaraj R, Salivahanan S (2011) Enhancement of Self-adaptive real-coded genetic algorithm using Taguchi method for Economic dispatch problem. Appl Soft Comput 11(1):83–92. https://doi.org/10.1016/j.asoc.2009.10.019

    Article  Google Scholar 

  81. Selvakumar AI, Thanushkodi K (2007) A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans Power Syst 22(1):42–51. https://doi.org/10.1109/TPWRS.2006.889132

    Article  Google Scholar 

  82. Kumar R, Sharma D, Sadu A (2011) A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch. Int J Electr Power Energy Syst 33(1):115–123. https://doi.org/10.1016/j.ijepes.2010.06.021

    Article  Google Scholar 

  83. Selvakumar AI, Thanushkodi K (2008) Anti-predatory particle swarm optimization: solution to nonconvex economic dispatch problems. Electr Power Syst Res 78:2–10. https://doi.org/10.1016/j.epsr.2006.12.001

    Article  Google Scholar 

  84. He D, Wang F, Mao Z (2008) A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect. Int J Electr Power Energy Syst 30(1):31–38. https://doi.org/10.1016/j.ijepes.2007.06.023

    Article  Google Scholar 

  85. Noman N, Iba H (2008) Differential evolution for economic load dispatch problems. Electr Power Syst Res 78(8):1322–1331. https://doi.org/10.1016/j.epsr.2007.11.007

    Article  Google Scholar 

  86. Panigrahi BK, Ravikumar Pandi V (2008) Bacterial foraging optimisation: Nelder-Mead hybrid algorithm for economic load dispatch. IET Gener Transm Distrib 2(4):556–565. https://doi.org/10.1049/iet-gtd:20070422

    Article  Google Scholar 

  87. Pothiya S, Ngamroo I, Kongprawechnon W (2010) Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int J Electr Power Energy Syst 32(5):478–487. https://doi.org/10.1016/j.ijepes.2009.09.016

    Article  Google Scholar 

  88. Amjady N, Nasiri-Rad H (2009) Economic dispatch using an efficient real-coded genetic algorithm. IET Gener Transm Distrib 3(3):266–278. https://doi.org/10.1049/iet-gtd:20080469

    Article  Google Scholar 

  89. Nadeem-Malik T, ul Asar A, Wyne MF, Akhtar S (2010) A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects. Electr Power Syst Res 80(9):1128–1136. https://doi.org/10.1016/j.epsr.2010.03.004

    Article  Google Scholar 

  90. Pothiya S, Ngamroo I, Kongprawechnon W (2008) Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers Manag 49(4):506–516. https://doi.org/10.1016/j.enconman.2007.08.012

    Article  Google Scholar 

  91. Mandal B, Roy PK, Mandal S (2014) Economic load dispatch using krill herd algorithm. Int J Electr Power Energy Syst 57:1–10. https://doi.org/10.1016/j.ijepes.2013.11.016

    Article  Google Scholar 

  92. Niknam T, Mojarrad HD, Meymand HZ (2011) Non-smooth economic dispatch computation by fuzzy and self adaptive particle swarm optimization. Appl Soft Comput J 11(2):2805–2817. https://doi.org/10.1016/j.asoc.2010.11.010

    Article  Google Scholar 

  93. Park J, Jeong Y, Shin J, Lee KY (2010) An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans Power Syst 25(1):156–166

    Article  Google Scholar 

  94. Elsayed WT, Hegazy YG, El-bages MS, Bendary FM (2017) Improved random drift particle swarm optimization with self-adaptive mechanism for solving the power economic dispatch problem. IEEE Trans Ind Informatics 13(3):1017–1026. https://doi.org/10.1109/TII.2017.2695122

    Article  Google Scholar 

  95. Basu M (2016) Kinetic gas molecule optimization for nonconvex economic dispatch problem. Int J Electr Power Energy Syst 80:325–332. https://doi.org/10.1016/j.ijepes.2016.02.005

    Article  Google Scholar 

  96. Santra D, Sarker K, Mukherjee A, Mondal A (2016) Hybrid PSO-ACO technique to solve multi-constraint economic load dispatch problems for 6-generator system. Int J Comput Appl 38(2–3):96–115. https://doi.org/10.1080/1206212X.2016.1218241

    Article  Google Scholar 

  97. Kuo CC (2008) A novel coding scheme for practical economic dispatch by modified particle swarm approach. IEEE Trans Power Syst 23(4):1825–1835. https://doi.org/10.1109/TPWRS.2008.2002297

    Article  Google Scholar 

  98. Guvenc U, Duman S, Saracoglu B, Ozturk A (1970) A hybrid GA-PSO approach based on similarity for various types of economic dispatch problems. Elektron ir Elektrotechnika 108(2):109–114. https://doi.org/10.5755/j01.eee.108.2.155

    Article  Google Scholar 

  99. Hardiansyah H (2013) A novel hybrid PSO-GSA method for non-convex economic dispatch problems. Int J Inf Eng Electron Bus 5(5):1–9. https://doi.org/10.5815/ijieeb.2013.05.01

    Article  Google Scholar 

  100. Solanki R, Patidar NP, Chaturvedi KT (2014) A new modified particle swarm optimization (PSO) technique for non-convex economic dispatch. IOSR J Electr Electron Eng 9(2):81–88. https://doi.org/10.9790/1676-09238188

    Article  Google Scholar 

  101. Basu M (2014) Improved differential evolution for economic dispatch. Int J Electr Power Energy Syst 63:855–861. https://doi.org/10.1016/j.ijepes.2014.07.003

    Article  Google Scholar 

  102. Basu M (2015) Modified particle swarm optimization for nonconvex economic dispatch problems. Int J Electr Power Energy Syst 69:304–312. https://doi.org/10.1016/j.ijepes.2015.01.015

    Article  Google Scholar 

  103. Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A (2012) Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res 93:93–105. https://doi.org/10.1016/j.epsr.2012.07.009

    Article  Google Scholar 

  104. Vo DN, Schegner P, Ongsakul W (2013) Cuckoo search algorithm for non-convex economic dispatch. IET Gener Transm Distrib 7(6):645–654. https://doi.org/10.1049/iet-gtd.2012.0142

    Article  Google Scholar 

  105. Adarsh BR, Raghunathan T, Jayabarathi T, Yang XS (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675. https://doi.org/10.1016/j.energy.2015.12.096

    Article  Google Scholar 

  106. Khamsawang S, Jiriwibhakorn S (2010) DSPSO–TSA for economic dispatch problem with nonsmooth and noncontinuous cost functions. Energy Convers Manag 51(2):365–375. https://doi.org/10.1016/j.enconman.2009.09.034

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their respective organizations for providing research opportunities and providing necessary resources towards completion of this paper.

Funding

The author(s) received no specific funding for this work by any funding agency. This is the authors own research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CKS and BV; methodology, CKS and BV.; software, VM; validation, CKS and BV.; formal analysis, CKS and BV; investigation, VM.; writing—original draft preparation, CKS and BV.; writing—review and editing, CKS, SS and BV; visualization, SS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vedik Basetti.

Ethics declarations

Conflict of interest

The authors declared that they have no competing interests exist and have no conflicts of interest among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1000 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basetti, V., Shiva, C.K., Sen, S. et al. An intelligent quasi-oppositional HBO technique to solve non-smooth non-convex economic dispatch problem. Evol. Intel. 17, 2293–2344 (2024). https://doi.org/10.1007/s12065-023-00889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-023-00889-1

Keywords

Navigation